您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 综合/其它 > 机器人学导论第4章操作臂逆运动学
第4章操作臂逆运动学4.1概述4.2可解性4.3当n6时操作臂子空间的描述4.4代数解法与几何解法4.5通过化简为多项式的代数解法4.6三轴相交的PIEPER解法4.7操作臂逆运动学实例4.8标准坐标系4.9操作臂求解4.10重复精度和定位精度4.11计算问题4.1概述•在上一章中讨论了已知操作臂的关节角,计算工具坐标系相对于用户工作台坐标系的位置和姿态的问题。在本章中,将研究难度更大的运动学逆问题:已知工具坐标系相对于工作台坐标系的期望位置和姿态,如何计算一系列满足期望要求的关节角?•第3章重点讨论操作臂的运动学正问题,而本章重点讨论操作臂的运动学逆问题。4.2可解性超越方程:当一元方程f(x)=0的左端函数f(x)不是x的多项式时,称之为超越方程。如指数方程,对数方程,三角方程和反三角方程等。sinx+x=0(1)解的存在性;(2)多重性;(3)求解方法234222331323423322113234233221523542333541523542312354152354231136523646542332654641652364654231226546416523646542311265236465423316465416523646542312164654155235465423111cdsasapcdsdcacaspsdsdcacacpccscsrssccssccsrssscsscccrssccssccsrscscccssscsscccsrscsccsssscssccccrcscsscccsrscccsccssssccccsrscccsscsssscccccrzyx1112132122230016163132330001xyzrrrprrrpTTTrrrp解的存在性解是否存在的问题完全取决于操作臂的工作空间。简单地说,工作空间是操作臂末端执行器所能到达的范围。若解存在,则被指定的目标点必须在工作空间内。灵巧工作空间:指机器人的末端执行器能够从各个方向到达的空间区域。也就是说,机器人末端执行器可以从任意方向到达灵巧工作空间的每一个点。可达工作空间:机器人至少从一个方向上有一个方位可以达到的空间。显然,灵巧工作空间是可达工作空间的子集。当一个操作臂少于6自由度时,它在三维空间内不能达到全部位姿。显然,图4-1中的平面操作臂不能伸出平面,因此凡是Z坐标不为0的目标点均不可达。在很多实际情况中,具有四个或五个自由度的操作臂能够超出平面操作,但显然不能达到全部目标点。必须研究这种操作臂以便弄清楚它的工作空间。通常这种机器人的工作空间是一个子空间,这个空间是由特定的机器人的工作空间确定的。一个值得研究的问题是,对于少于6个自由度的操作臂来说,给定一个确定的一般目标坐标系,什么是最近的可达目标坐标系?工作空间也取决于工具坐标系的变换,因为所讨论的工具端点一般就是我们所说的可达空间点。一般来说,工具坐标系的变换与操作臂的运动学和逆向运动学无关,所以一般常去研究腕部坐标系{W}的工作空间。对于一个给定的末端执行器,定义工具坐标系{T},给定目标坐标系{G},去计算相应的坐标系{W}。接着我们会问:{W}的期望位姿是否在这个工作空间内?这里,我们所研究的工作空间(从计算的角度出发)与用户关心的工作空间是有区别的,用户关心的是末端执行器的工作空间({T}坐标系)。如果腕部坐标系的期望位姿在这个工作空间内,那么至少存在一个解。多重解问题在求解运动学方程时可能遇到的另一个问题就是多重解问题。一个具有3个旋转关节的平面操作臂,由于从任何方位均可到达工作空间内的任何位置,因此在平面中有较大的灵巧工作空间(给定适当的连杆长度和大的关节运动范围)。图4-2所示为在某一位姿下带有末端执行器的三连杆平面操作臂。虚线表示第二个可能的位形,在这个位形下,末端执行器的可达位姿与第一个位形相同。因为系统最终只能选择一个解,因此操作臂的多重解现象会产生一些问题。解的选择标准是变化的,然而比较合理的选择应当是取“最短行程”解。例如,在图4-3中,如果操作臂处于A点,我们希望它移动到点B,最近解就是使得每一个运动关节的移动量最小。因此,在没有障碍的情况下,可选择图4-3中上部虚线所示的位形,这表明对于操作臂的当前位置来说只需要对逆运动学程序输入一个小位移量即可。这样利用算法能够选择关节空间内的最短行程解。解的个数取决于操作臂的关节数量,它也是连杆参数和关节运动范围的函数。例如,PUMA560机器人到达一个确定的目标有8个不同的解。图4-4所示为其中的4个解,它们对于手部来说具有相同的位姿。对于图中所示的每一个解,存在另外一种解,其中最后三个关节变为另外一种位形,如下式所示:1801806'65'54'4通常,连杆的非零参数越多,达到某一特定目标的方式也越多。以一个具有6个旋转关节的操作臂为例,图4-5表明解的最大数目与等于零的连杆长度参数的数目有关。非零参数越多,解的最大数目就越大。对于一个全部为旋转关节的6自由度操作臂来说,可能多达16种解。解法与线性方程组不同,非线性方程组没有通用的求解算法。我们把操作臂的全部求解方法分成两大类:封闭解和数值解法。由于数值解法的迭代性质,因此它一般要比相应的封闭解法的求解速度慢很多。实际上在大多数情况下,我们并不喜欢用数值解法求解运动学问题。因为封闭解的计算速度快,效率高,便于实时控制。而数值法不具有些特点为。“封闭形式”意指基于解析形式的解法,或者意指对于不高于四次的多项式不用迭代便可完全求解。可将封闭解的求解方法分为两类:代数法和几何法。有时它们的区别又并不明显:任何几何方法中都引入了代数描述,因此这两种方法是相似的。这两种方法的区别或许仅是求解过程的不同。牛顿迭代法的几何解释:方程的根在几何上是曲线与x轴的交()0fx*x()yfx点的横坐标。若是根的一个近似,过曲线上横坐标为kx*xkx的点作曲线的切线,则该切线与x轴交点的横坐kP()yfx标即为。1kxxyx*x01x2x00(,())xfx牛顿法基本思想:将非线性方程线性化,以线性方程的解逼近非线性方程的解。4.3当n6时操作臂子空间的描述确定n自由度操作臂子空间的一种方法就是给出腕部坐标系或工具坐标系的表达式,它是含有n个变量的函数。如果将这n个变量看着自由变量,那么它们所有的可能取值就构成了这个子空间。10000.00.10.00.00.00.0ycsxscTBW020yxPORG0ˆ222220yxyyxxZ10000010002222222202yyxyyxxxyxxyxyT为了对具有n个自由度操作臂的目标点进行定义,通常采用n个参数来确定这个目标点。也就是说,如果给定的目标点有6个自由度,一般自由度n6的操作臂是无法到达这个目标点的。在这种情况下,可寻找一个位于操作臂子空间内的可达目标点代替目标点,并且和原期望目标点尽可能“靠近”。首先确定工具坐标系原点到期望目标点的位置,然后选择一个接近期望姿态的可达姿态。正如我们在例4.1和4.2中所见的,子空间的计算取决于操作臂的几何特征。对每个操作臂必须单独考虑,从而得到相应的计算方法。为了计算关节角使得操作臂能够到达距期望坐标系最近的可达坐标系,在4.7节中给出了将一个一般目标点投影到五自由度操作臂子空间的例子。4.4代数解法与几何解法代数解法:以第三章所介绍三连杆平面操作臂为例,其坐标和连杆参数如下按第三章的方法,应用这些连杆参数可以求得这个机械臂的运动学方程:1000010000122111231231221112312303slslcsclclscTTBW641000010000ycsxscTBW74令式(4-6)和(4-7)相等,可以求得四个非线性方程,进而求出θ1,θ2和θ3:123cc123ss12211clclx12211slsly84941041141231231121212312311212030000=0010001000010001csxcslclcscysclslsT222212122=2xyllllc124解得2122212222llllyxcS2的表达式为2221cs最后利用2幅角反正切公式计算θ2,得),(2tan222csA式(4-15)是多解的,可选择“正”解或“负”解确定式(4-15)的符号。在确定时,再次应用求解运动学参数的方法,即常用的先确定期望关节角的正弦和余弦,然后应用2幅角反正切公式的方法。这样确保得出所有的解,且所求的角度是在适当的象限里。1211skckx1211cksky2222211slkcllk2221kkr),(2tan12kksincos21rkrk式(4-17)和(4-18)可以写成:1111cossinsincossinsincoscosryrx因此rx)cos(1ry)sin(1利用2幅角反正切公式,得),(2tan,2tan1xyrxry从而121,2tan,2tankkxy•注意如果x=y=0,则是(4-27)不确定,此时θ1可取任意值。•最后,由式(4-8)(4-9)能够求出θ1,θ2,θ3的和:•由于θ1,θ2已知,从而可以解出θ3•总之,用代数方法求解运动学方程是求解操作臂的基本方法之一。),(2tan322csA164几何解法•在几何方法中,为求出操作臂的解,须将操作臂的空间几何参数分解成为平面几何参数。用这种方法在求解操作臂时(特别是α1=0或±90°)是相当容易的。然后应用平面几何方法可以求出关节角度。利用余弦定理求解θ22222121222cos180xyllll现在,cos(180+θ2)=-cos(θ2),所以有2122212222llllyxc讨论:①为了保证解存在,目标点(x,y)应满足;②在满足解存在的前提下,有两个解)0180(22'2为了求解θ1,需要建立图4-8所示的ψ和β角的表达式。首先,β可以位于任意象限,这是由x和y的符号决定的。为此,应用2幅角反正切公式:),(2tanxyA再利用余弦定理解出ψ:22220012221cos(0180)2xylllxy1其中当02时取“+”号当02时取“-”号可由123解出关节角34.5通过化简为多项式的代数解法超越方程往往很难求解,即使只有一个变量,因为它一般常以sin和cos的形式出现。可进行下列变换,用单一变量u来表示:22212sin11cos2tanuuuuu这是在求解运动学方程中经常用到的一种很重要的几何变换方法。这个变换是把超越方程变换成关于u的多项式方程。例4.3将超越方程变换成含有半角正切的一次多项式,以求解。cbasincos)1(2)1(22ucbuua0)(2)(2acbuucacacabbu222cacabb2221tan24.6三轴相交的PIEPER解法如前所述,尽管一般具有6个自由度的机器人没有封闭解,但在某些特殊情况下还是可解的。Pieper研究了3个相邻的轴交于一点的6自由度操作臂。在本节
本文标题:机器人学导论第4章操作臂逆运动学
链接地址:https://www.777doc.com/doc-4250972 .html