您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 纳米科技及其相关应用
纳米科技及其相关应用摘要:纳米科技(英文:Nanotechnology)是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。纳米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国的国家纳米科技启动计划(NationalNanotechnologyInitiative)将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。纳米科技的世界为原子、分子、高分子、量子点和高分子集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。纳米科技的神奇来自于其在纳米尺度下所拥有的量子和表面现象,并因此可能可以有许多重要的应用和制造许多有趣的材质。关键词:纳米科技,纳米科技应用,纳米科技前景纳米科技历史:1959年12月29日物理学家理查德·费曼在加州理工学院出席美国物理学会年会,作出著名的演讲《在底部还有很大空间》,提出一些纳米技术的概念,虽然在当时仍未有“纳米技术”这个名词。他以“由下而上的方法”(bottomup)出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”这被视为是纳米技术概念的灵感来源。图1由NASA电脑摸拟的分子齿轮1962年,日本东京大学的久保亮五教授提出了量子限制理论,用来解释金属纳米粒子的能阶不连续,这是很重要的里程碑,使得人们对纳米粒子的电子结构、型态和性质有了进一步的了解。而纳米科技一词的定义是东京理科大学的谷口纪男教授在1974年提出[1][2][3]。1981年,扫描隧道显微镜(STM)的发明被广泛视为纳米元年。1980年代,IBM的安贝旭等人做出多晶体的金环,金环直径小于400纳米,线宽在数十纳米左右。当外加磁场时,金环产生震荡电阻,这种现象称作磁阻效应,而这种效应明显和环的小尺寸有关,主要是金环内的电子受到金环纳米尺寸的干扰,而在环内两侧震荡。一般块状金是电的良导体,电阻值很小,不受磁场的影响。但上述纳米金环的结果显示,当金粒子小到纳米尺度时,其物理性质与大尺寸时不同,这个现象可以用来制作新的纳米电子元件。1984年德国葛莱特等人利用惰性气体蒸发凝结法,制得铁、铜、铅及二氧化钛的纳米粒子。其中,二氧化钛的纳米颗粒具有良好的延展性,可以改善陶瓷材料的脆性。1982年瑞士IBM公司的科学家格尔德·宾宁(GerdK.Binnig)及亨利希·罗勒(HeinrichRohrer),开发出扫描隧道显微镜,它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,依此来观测物体表面的形貌。四年后,也就是1986年,这两位科学家和发明穿透式电子显微镜的厄恩斯特·鲁什卡共享诺贝尔物理奖。到了1985年,史马利、柯尔和柯洛托在石墨上利用雷射激光,让它蒸发而成碳黑,纯化后得到的碳簇置于质谱仪中分析,发现两种不明物质,质量分别是碳的60倍与70倍,因此这两种不明物质被称作C60与C70。C60的形状像一颗足球,有20个六边形及12个五边形的面,共32面的封闭球体。事实上,科学家在太空收集宇宙尘埃时,早就发现C60、C70等物质。所以上述三位科学家是最早在地球上制造C60及C70的人,他们也共同获得了1996年的诺贝尔奖。1985年,斯坦福大学的奎特教授以及IBM的格尔德·宾宁(GerdK.Binnig)及亨利希·罗勒(HeinrichRohrer)共同发明了原子力显微镜。它也是利用一根探针来扫描物体的表面,当探针靠近待测物体时,探针与物体之间产生作用力,这作用力可以是吸引力或排斥力,并可借此分析物体表面的形貌。最重要的是,这种仪器可观察的物体不仅是半导体或金属,也可以是绝缘体。现在很多生物样品的观察,已经大量使用这种设备。图2富勒烯(富勒烯家族的成员是纳米科技的主要研究项目)1988年,拜必序的研究团队开发出铁铬(Fe/Cr)纳米多层膜,在低温下改变磁场,电阻会随着产生急遽的改变。相对来说,一般磁性金属(或合金)的电阻是不容易随磁场的改变而变化的。到目前为止,已经发现铁铜(Fe/Cu)、铁银(Fe/Ag)、铁铝(Fe/Al)、铁金(Fe/Au)、钴铜(Co/Cu)、钴银(Co/Ag)、钴金(Co/Au)等纳米多层膜都具有这种效应。1990年,美国IBM公司的艾格勒利用这种仪器,把35个氙原子(xenon),化学符号是(Xe)排成IBM三个字母。这是人类历史上首次操纵原子,用原子或分子制造机器,也不再是梦想。图3由原子排成的IBM三个字母1991年,克雷需莫和霍夫曼发展出一次可以做出数公克重C60的方法。现在,科学家也尝试利用C60的性质制成各种药物。1996年霍伊儿也合成出二氧化钛(TiO2)纳米管。二氧化钛本身是一个极佳的光触媒材料,广泛应用在医疗保健,例如消灭细菌或是杀死病毒。开发出纳米管状的二氧化钛,应用范围也会更多样化。目前,科学家已尝试把二氧化钛纳米粒子或纳米管应用在光敏化有机太阳电池上,做为光电转换材料,现在已经可以达到实用水平。2001年在日本筑波举行的“纳米碳管发现十周年”研讨会中,韩国三星公司展示用纳米碳管做成的场发射全彩色电视屏幕。这个电视的屏幕是由多层壁纳米碳管的前端,产生场发射电子做为电子源,而应用在平面显示器上。至于医疗用小型X光产生装置的电子源,也可以应用纳米碳管。纳米科技已被视为新一波产业革命的源头技术,欧美日本等国家的政府部门,近年来均编列大幅预算,推动国家级纳米基础科学、工程技术之研发;学术界及产业界亦相继投注大量人力资金于这场纳米科技的全球竞赛中,希冀于专利与产品开发上抢得先机。美国,在1993年成立第一个纳米技术研究机构,2000年七月,美国政府向国会提出国家型纳米科技推动与落实计划书。2000~2001年,各国相继针对该国产业现况,纷纷提出纳米科技发展计划。日本成立“纳米材料研究所”(Tsukuba)、欧盟成立“纳米电子技术联盟”(IMEC)、德国成立六个纳米技术卓越群、中国(北京)成立纳米国家科研中心,台湾工业技术研究院亦于2002年一月,成立纳米科技研发中心。全球有30余国规划及投入纳米领域研发,投入范围包括物理、生技及电子等前瞻领域研究,及纳米新材料的制造与特性开发。产业界也透过新建立的纳米材料特性及关键技术,开发新产品及改善产品性能,来提升竞争力。目前为止,纳米科技尚处于一个国际间相互既交流又有点竞争的萌芽阶段。应用技术一、纳米结晶材料(nanocrystallinematerials)当物质的微结构微小化时,表面原子与内部材料原子的个数比例显著上升,界面之原子行为对物质性质便有决定性影响。例如纳米金属结晶颗粒,展现出较佳之强度、硬度、磁特性、表面催化性等;而具纳米结晶之陶瓷材料相较于一般陶瓷材料,则具较高之延展性、较不易脆裂之特性。纳米结晶金属由于其强度之增加,相当大之应用机会在于汽车业、航太业、建筑业等之结构材料,例如Toyota汽车已使用新型纳米结晶钢材于其汽车产品上;这方面之应用,纳米复合材料是另一竞争者,但于某些用途上,如汽车引擎,纳米结晶金属材料仍保有其优越性。纳米结晶材料薄膜可提高表面之硬度、降低磨擦、提高耐热性、耐化学腐蚀性等,可应用于汽车、航空业等之机械系统。在生物医学方面,纳米结晶银有抗菌作用,而纳米结晶钛则可应用于人工关节。二、纳米粉体(nanoparticles):纳米粉体是纳米材料中种类最繁多且应用最广泛之一类。最常见的陶瓷纳米粉体(ceramicnanoparticles)可再分为二类:(一)金属氧化物如TiO2,ZnO等(二)硅酸盐类,通常为纳米尺度之黏土薄片。纳米粉体的制程,包括固相机械研磨法、液相沉淀法、溶胶-凝胶法、化学气相沉积法等,不同之方法各有其优缺点及适用范围。此外,纳米粉体之表面覆膜与修饰,亦常是对粉体后段应用必要的处理步骤。如高浓度CO净化触媒-Au/TiO2,即将~10nm的金均匀分布在TiO2载体上,以发挥其净化功能,其中TiO2载体为溶胶-凝胶法制得之纳米孔隙材料,以具备纳米尺寸空间容纳金纳米颗粒。(一)复合材料:纳米粉体最大之应用之一,在于纳米高分子复合材料之开发。由于无机分散相表面积与高分子间之作用力,使复合材料之刚性大幅提升,透气性、热膨胀性下降,耐化学腐蚀,及保有透明性等之优点,可广泛应用于一般民生工业,如家电器材、汽车零组件、输送导管等耐磨结构材料上;在包装材料上之应用,如保鲜膜、饮料瓶,则可利用其耐热性、高阻气性及透明等优点。Caly/Nylon之复合材料,由于分散均匀,只要添加3~4%,即可将Nylon之熔点从70℃提升至150℃,且加工性非常良好。(二)涂布:纳米粉体涂布具增强表面硬度、抗磨、透明等特性,已应用于建材及太阳眼镜镜片上,Kodak正发展以纳米粉体涂布制造防刮之x-ray底片。此外,亦有利用纳米粉体涂布光学、耐腐蚀、绝热特性之应用开发。磁性纳米粉体涂布则可应用于资料储存方面。(三)医学与药物:经表面修饰之纳米粉体可应用于药物输送、纳米银微粒具有抗菌功效、氧化锌则具杀霉作用。TiO2与ZnO对UV吸收有相当好之功效,可应用于防晒油等美容产品。(四)其他:纳米粉体之高表面积,可利用工业上之催化反应;用于燃料电池上,可增加其反应速率,提高效能。此外,纳米颜料的开发、使用金属纳米粉体印制电子电路、及磁性纳米粉体于半导体与医学核磁共振影像上之使用,均为纳米粉体之应用机会。三、纳米孔隙材料(nanoporousmaterials)此类材料指孔隙尺寸小于100纳米之多孔隙材料,包括自然界中早已存在之生物膜与沸石,其高表面积(通常高达~102m2/g),使之具高催化及吸附效应。纳米孔隙材料可由溶胶-凝胶法、微影蚀刻、离子束等方法制得;纳米孔隙薄膜经镀膜处理,可得纳米细管结构。纳米孔隙材料可用开发改良催化剂,应用于石化工业等。图4MOF-200材料的晶体结构利用孔隙结构,在薄膜过滤系统纯化/分离、药物输送植入装置、及基因定序、医学检测等,纳米孔隙材料均有相当大之应用潜能。气胶为质轻之良好绝热材料;纳米孔隙薄膜可作为半导体业中之低介电材料;纳米多孔硅特殊的发光性质,可作为固态雷射之材料;纳米多孔碳则具高电容特性,可应用于如手提电脑、移动电话,乃至电动车等电池之开发。四、纳米纤维与纳米缆线(nanofibers,nanowires)纳米纤维在此指相对较短之纤维,包括碳纤丝(carbonfibrils)、人造高分子纤维、及氧化铝纤维等;电纺(electrospinning)是制造人造高分子纳米纤维之方法,可结合纳米微粒或纳米管等材料于纤维中。工研院化学工业研究所正开发之电纺纳米纤维,其尺度约为人发的1/100。纳米缆线则倾向为无机材质,包括金属、半导体(如硅、锗)、及一些有机高分子,主要应用于电子工程。其制造主要有三个方式:(一)微影蚀刻或拓印。(二)化学成长。(三)自组装成长。纳米缆线之电子传递行为并不遵循古典电学,例如其电阻为一定值并不随长度改变;应用于建构复杂之电路系统时,须挑战之困难点在于缆线间之连结性。纳米纤维可用于复合材料与表面涂布,达补强作用。HyperionCatalysisInternational正开发利用纳米碳纤丝,制造导电塑胶及薄膜,可应用在汽车之静电涂料或电器设备之静电消除;与传统导电塑胶材料比较,达同样导电效果所须添加之碳纤丝量较低,且材料表面亦较平滑。电纺纳米纤维具强度提升与高表面积等特性,适合作为纳米粉体于催化应用上之反应床。纳米纤维可制成抗化学品、防水透气、防污等特殊性能布料,在纺织服装业上有广大的市场;Nano-Tex公司已有开发之商业化产品问世。纳米纤维可用为过滤材料及医学组织工程之支架材料;在药物输送之媒介、传感器
本文标题:纳米科技及其相关应用
链接地址:https://www.777doc.com/doc-4263518 .html