您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 87完整的结构力学答案-同济大学朱慈勉
朱慈勉结构力学第2章课后答案全解2-2试求出图示体系的计算自由度,并分析体系的几何构造。(a)ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(ⅡⅢ)舜变体系`ⅠⅡⅢ(b)W=5×3-4×2–6=10几何可变(c)有一个多余约束的几何不变体系(d)2-3试分析图示体系的几何构造。(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)几何不变W=3×3-2×2–4=10可变体系(b)ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(ⅡⅢ)几何不变2-4试分析图示体系的几何构造。(a)(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)ⅠⅡⅢ几何不变(b)W=4×3-3×2-5=10几何可变体系(c)ⅢⅠⅡ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)几何不变(d)(ⅠⅡ)ⅢⅠⅡ(ⅡⅢ)(ⅠⅢ)二元杆有一个多余约束的几何不变体(e)ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)无多余约束内部几何不变(g)ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体(h)ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体多余约束W=3×8-9×2–7=-1,有1个多余约束2-5试从两种不同的角度分析图示体系的几何构造。(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)(ⅠⅢ)几何不变同济大学朱慈勉结构力学第3章习题答案3-2试作图示多跨静定梁的弯矩图和剪力图。(a)4PFa2PFa2PFaM4PFQ34PF2PF(b)ABCaaaaaFPaDEFFP2m6m2m4m2mABCD10kN2kN/m42020MQ10/326/3410(c)21018018040M1560704040Q(d)3m2mA2mABCEF15kN3m3m4m20kN/mD3m2m2m2mA2m2m2mABCDEFGH6kN·m4kN·m4kN2m7.5514482.524MQ3-3试作图示刚架的内力图。(a)242018616MQ1820(b)4kN·m3m3m6m1kN/m2kNACBD6m10kN3m3m40kN·mABCD3030301101010QM210(c)664275MQ(d)3m3m2kN/m6kN6m4kNABCD2kN6m2m2m2kN4kN·mACBDE444444/32000MQN(e)44814``(f)4m4mABC4m1kN/mD4m4kNABC2m3m4m2kN/m2222200.815MQN3-4试找出下列各弯矩图形的错误之处,并加以改正。(a)FP(b)(c)FP(d)M(e)(f)FPFP3-5试按图示梁的BC跨跨中截面的弯矩与截面B和C的弯矩绝对值都相等的条件,确定E、F两铰的位置。lBCEFxDAqllxBCEFDA28qlM2221()222116121618cBCBCCqqlMlxxqxxMMMMqlqlxqlxl中FD()2qlx3-6试作图示刚架的弯矩和剪力图。(a)909045135405MQ2B209(4.53)645()0.5209459405,135()453135,0.5209900.520990FFEECFCDBARRMRMMM对点求矩(b)5.75111MQ4.25424213.51.50.2525.75A724252.50.5()C420.5244.25()3.5(),0.25()5.752.1,244.253.752.5EKBBBBAAEFKMMRRHHVHQQ左对点求矩:对点求矩:22.93.754.252.1(c)8016016016010060401680/38030MQ8080380,61603330():(2023304)/2120():61201030420211320()380()3DAEDCCBBAMMHFVAVVV对点求矩对点求矩(d)8/316/38/34/343543520354/3MQ88414233:41614284()4:441426()38(),03DABBBBAAMAVVCHHHV对点求矩对点求矩(e)2FaF2Fa2FaFFF2F----+2Fa2Fa2FaMQ02(),020322222(),2()4(),0CBpEBFBPHPFHPFPDPDMVFMHVMFaaHFaVaHFVFHFV(f)88利用对称性进一步简化BHBVIHIV88:4(),4()4(),4(),42810BBIIAHKNVKNHKNVKNMNm可知88888844444444-+---+++(g)qa2aaaaaaaABCGHFJDEIqq22qa232qa2qa22qa2qa232qa232qa22qa2qaqa2qa1.5qa1.5qa22221.5()21.501.5()0,,1.5CCAADGFGHHqaqaHaHqaqaaHaHqaHMqaMqa对点求矩:对F点求矩:同济大学朱慈勉结构力学第5章习题答案5-1试回答:用单位荷载法计算结构位移时有何前提条件?单位荷载法是否可用于超静定结构的位移计算?aAFPFPBCaaaa(bDENCDNCENBENADNBCNACDEFF0,FF2FFFABPPPPRRFFFF由对称性分析知道122221121212122222NNP122(2)2FF1()26.832222()PPPcxPFaFalFaFaEAEAEAEAEA5-4已知桁架各杆截面相同,横截面面积A=30cm2,E=20.6×106N/cm2,FP=98.1kN。试求C点竖向位移yCΔ。k5PF5PF5PF5PF54PF54PF54PF2PF2PF25544PPPPFFFFNADNAENECNEF由节点法知:对A节点F=-5F对E节点FFk1115(122516()()24)411.46()NNPycPPPFFlFFFEAEAcmNADNAE由节点法知:5对A节点F=-F25-5525-5已知桁架各杆的EA相同,求AB、BC两杆之间的相对转角BΔ。8kN42424242-42-4244884444-4-4-8-8-12-12杆的内力计算如图所示施加单位力在静定结构上。其受力如图14214214141428141424其余未标明的为零力杆11(1242)NNPBFFlEAEA5-6试用积分法计算图示结构的位移:(a)yBΔ;(b)yCΔ;(c)B;(d)xBΔ。(a)211232113421yc1004142B()1()26()111()()()26111=()30120pllpqqqxxqlqqMxqxxlMxxqqMxMxdxqxxdxEIEIlqlqlEI以点为原点,向左为正方向建立坐标。显然,(b)22ql254qlPMl74lM2224113153251315127()()324244342243416ycqlqllqllqllllllqlEIEIABq2q1lEIl3l4ABCqlEI=常数(c)22201()(sin)12(1cos)2()1111[(sin)12(1cos)]2(8-3)-1.42=()EIEIBMRRMRRRdEI逆时针(d)qdsqRd20()sin()(1cos)MqRdRqR2240()sin111()()(1cos)sin()2xBMRMMdsqRRRdqREIEIEI5-7试用图乘法计算图示梁和刚架的位移:(a)yCΔ;(b)yDΔ;(c)xCΔ;(d)xEΔ;(e)D;(f)yEΔ。(a)OAB1kN/m2kNR=2m4mBORAqEI=常数3212121Ax以为原点,向右为正方向建立坐标26yc0()51(0x3)2()13(3x6)2181()()()MxxxxMxxMxMxdxEIEI(b)6m2m2m2kN/m6kNABCDE1mEI=常数A0.5163PMM611211(23)623662384311(32162(3)(6))62225+612()62yDEIEIEIEIEI(c)2kN2kN2EI6mADCBEIEI2kN/m3m3m3m2323611183036PM642M23(21822182230423018423042366436630)6261226918+(2366)63()638xcEIEIEIEI(e)EIABCEIEIDk4kN2kN/m6m4m4m4m3mk6.56.513.542261216MPM181211110(1231)(2121)2612141111311(1016)(226)(416)13.5326232486227=()316PDPMMdsFFEIkEIEIEIEIEIkEIk顺时针5-9图示结构材料的线膨胀系数为α,各杆横截面均为矩形,截面高度为h。试求结构在温度变化作用下的位移:(a)设h=l/10,求xBΔ;(b)设h=0.5m,求CDΔ(C、D点距离变化)。(a)lAB+35℃+25℃CDl+25℃+25℃11LLM1N1202102226030t=tt1022t101=301(2)2=30(102)/23010NkttttCCtFdsMdshlllhllll(b)ABCD0000000+t+t+t4m4m4m3m3434545411111N图33055451+5(1)12(43243)42254.5()NktttFdsMdsthttthtM图5-10试求图示结构在支座位移作用下的位移:(a)CΔ;(b)yCΔ,CΔ。(a)hADCED′C′E′B′Ba2l2lbCΔ1001h1h1[()]()RCaFCahh方向与图示一致(b)c1ABCDB′C′A′a2a2aD′c2c3CΔ10.51.50RF图12211331[]()2222RycFCCCCC134a54a12a123213351531[]442442CCCCCCCaaaaaa习题6-1试确定图示结构的超静定次数。(a)(b)(c)(d)(e)(f)(g)所有结点均为全铰结点2次超静定6次超静定4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定III刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M、FQ图。(a)解:上图=l1MpM01111pX其中:EIlllllllEIllllEI8114232332623232333211311EIlFllFllFEIlpppp81733232226323108178114313EIlFXEIlppFX211pMXMM11lFp61lFp61FP4×2aA2l3l3B2
本文标题:87完整的结构力学答案-同济大学朱慈勉
链接地址:https://www.777doc.com/doc-4266366 .html