您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 电子设计/PCB > PCB-EMC设计规范
1PCBEMC设计规范目录第一部分布局1层的设置1.1合理的层数1.1.1Vcc、GND的层数1.1.2信号层数1.2单板的性能指标与成本要求1.3电源层、地层、信号层的相对位置1.3.1Vcc、GND平面的阻抗以及电源、地之间的EMC环境问题1.3.2Vcc、GND作为参考平面,两者的作用与区别1.3.3电源层、地层、信号层的相对位置2模块划分及特殊器件的布局2.1模块划分2.1.1按功能划分2.1.2按频率划分2.1.3按信号类型分2.1.4综合布局2.2特殊器件的布局2.2.1电源部分2.2.2时钟部分2.2.3电感线圈22.2.4总线驱动部分2.2.5滤波器件3滤波3.1概述3.2滤波器件3.2.1电阻3.2.2电感3.2.3电容3.2.4铁氧体磁珠3.2.5共模电感3.3滤波电路3.3.1滤波电路的形式3.3.2滤波电路的布局与布线3.4电容在PCB的EMC设计中的应用3.4.1滤波电容的种类3.4.2电容自谐振问题3.4.3ESR对并联电容幅频特性的影响3.4.4ESL对并联电容幅频特性的影响3.4.5电容器的选择3.4.6去耦电容与旁路电容的设计建议3.4.7储能电容的设计4地的分割与汇接34.1接地的含义4.2接地的目的4.3基本的接地方式4.3.1单点接地4.3.2多点接地4.3.3浮地4.3.4以上各种方式组成的混合接地方式4.4关于接地方式的一般选取原则:4.4.2背板接地方式4.4.3单板接地方式第二部分布线1传输线模型及反射、串扰1.1概述:1.2传输线模型1.3传输线的种类1.3.1微带线(microstrip)1.3.2带状线(Stripline)1.3.3嵌入式微带线1.4传输线的反射1.5串扰2优选布线层2.1表层与内层走线的比较42.1.1微带线(Microstrip)2.1.3微带线与带状线的比较2.2布线层的优先级别3阻抗控制3.1特征阻抗的物理意义3.1.1输入阻抗:3.1.2特征阻抗3.1.3偶模阻抗、奇模阻抗、差分阻抗3.2生产工艺对对阻抗控制的影响3.3差分阻抗控制3.3.1当介质厚度为5mil时的差分阻抗随差分线间距的变化趋势3.3.2当介质厚度为13mil时的差分阻抗随差分线间距的变化趋势3.3.3当介质厚度为25mil时的差分阻抗随差分线间距的变化趋势3.4屏蔽地线对阻抗的影响3.4.1地线与信号线之间的间距对信号线阻抗的影响3.4.2屏蔽地线线宽对阻抗的影响3.5阻抗控制案例4特殊信号的处理5过孔5.1过孔模型5.1.1过孔的数学模型5.1.2对过孔模型的影响因素55.2过孔对信号传导与辐射发射影响5.2.1过孔对阻抗控制的影响5.2.2过孔数量对信号质量的影响6跨分割区及开槽的处理6.1开槽的产生6.1.1对电源/地平面分割造成的开槽6.2开槽对PCB板EMC性能的影响6.2.1高速信号与低速信号的面电流分布6.2.2分地”的概念6.2.3信号跨越电源平面或地平面上的开槽的问题6.3对开槽的处理6.3.1需要严格的阻抗控制的高速信号线,其轨线严禁跨分割走线6.3.2当PCB板上存在不相容电路时,应该进行分地的处理6.3.3当跨开槽走线不可避免时,应该进行桥接6.3.4接插件(对外)不应放置在地层隔逢上6.3.5高密度接插件的处理6.3.6跨“静地”分割的处理7信号质量与EMC7.1EMC简介7.2信号质量简介7.3EMC与信号质量的相同点7.4EMC与信号质量的不同点67.5EMC与信号质量关系小结:第三部分背板的EMC设计1背板槽位的排列1.1单板信号的互连要求1.2单板板位结构1.2.1板位结构影响;1.2.2板间互连电平、驱动器件的选择2背板的EMC设计2.1接插件的信号排布与EMC设计2.1.1接插件的选型2.1.2接插件模型与针信号排布2.2阻抗匹配2.3电源、地分配2.3.1电源分割及热插拔对电源的影响2.3.2地分割与各种地的连接2.3.3屏蔽层第四部分射频PCB的EMC设计1板材1.1普通板材1.2射频专用板材2隔离与屏蔽2.1隔离72.2器件布局2.3敏感电路和强辐射电路2.4屏蔽材料和方法2.5屏蔽腔的尺寸3滤波3.1电源和控制线的滤波3.2频率合成器数据线、时钟线、使能线的滤波4接地4.1接地分类4.2大面积接地4.3分组就近接地4.4射频器件接地4.4接地时应注意的问题4.5接地平面的分布5布线5.1阻抗控制5.2转角5.3微带线布线5.4微带线耦合器5.5微带线功分器5.6微带线基本元件5.7带状线布线85.8射频信号走线两边包地铜皮6其它设计考虑:第一部分布局1层的设置在PCB的EMC设计考虑中,首先涉及的便是层的设置;单板的层数由电源、地的层数和信号层数组成;电源层、地层、信号层的相对位置以及电源、地平面的分割对单板的EMC指标至关重要。1.1合理的层数根据单板的电源、地的种类、信号密度、板级工作频率、有特殊布线要求的信号数量,以及综合单板的性能指标要求与成本承受能力,确定单板的层数;对于EMC指标要求苛刻(如:产品需认证CISPR16CLASSB)而相对成本能承受的情况下,适当增加地平面乃是PCB的EMC设计的杀手锏之一。1.1.1Vcc、GND的层数单板电源的层数由其种类数量决定;对于单一电源供电的PCB,一个电源平面足够了;对于多种电源,若互不交错,可考虑采取电源层分割(保证相邻层的关键信号布线不跨分割区);对于电源互相交错(尤其是象8260等IC,多种电源供电,且互相交错)的单板,则必须考虑采用2个或以上的电源平面,每个电源平面的设置需满足以下条件:*单一电源或多种互不交错的电源;*相邻层的关键信号不跨分割区;9地的层数除满足电源平面的要求外,还要考虑:*元件面下面(第2层或倒数第2层)有相对完整的地平面;*高频、高速、时钟等关键信号有一相邻地平面;*关键电源有一对应地平面相邻(如48V与BGND相邻)。1.1.2信号层数在CAD室现行工具软件中,在网表调入完毕后,EDA软件能提供一布局、布线密度参数报告,由此参数可对信号所需的层数有个大致的判断;经验丰富的CAD工程师,能根据以上参数再结合板级工作频率、有特殊布线要求的信号数量以及单板的性能指标要求与成本承受能力,最后确定单板的信号层数。信号的层数主要取决于功能实现,从EMC的角度,需要考虑关键信号网络(强辐射网络以及易受干扰的小、弱信号)的屏蔽或隔离措施。1.2单板的性能指标与成本要求面对日趋残酷的通讯市场竞争,我们的产品开发面临越来越大的压力;时间、质量、成本是我们能否战胜对手乃至生存的基本条件。对于高端产品,为了尽快将质量过硬的产品推向市场,适当的成本增加在所难免;而对于成熟产品或价格压力较大的产品,我们必须尽量减少层数、降低加工难度,用性价比合适的产品参与市场竞争。对于消费类产品,如,电视、VCD、计算机的主板一般都使用6层以下的PCB板,而且会为了满足大批量生产的要求、严格遵守有关工艺规范、牺牲部分性能指标。101.3电源层、地层、信号层的相对位置1.3.1Vcc、GND平面的阻抗以及电源、地之间的EMC环境问题(此问题有待深入研究、以下列出现有部分观点,仅供参考)*电源、地平面存在自身的特性阻抗,电源平面的阻抗比地平面阻抗高;*为降低电源平面的阻抗,尽量将PCB的主电源平面与其对应的地平面相邻排布并且尽量靠近,利用两者的耦合电容,降低电源平面的阻抗;*电源地平面构成的平面电容与PCB上的退耦电容一起构成频响曲线比较复杂的电源地电容,它的有效退耦频带比较宽,(但存在谐振问题)。1.3.2Vcc、GND作为参考平面,两者的作用与区别电源、地平面均能用作参考平面,且有一定的屏蔽作用;但相对而言,电源平面具有较高的特性阻抗,与参考电平存在较大的电位势差;从屏蔽的角度,地平面一般均作了接地处理,并作为基准电平参考点,其屏蔽效果远远优于电源平面;在选择参考平面时,应优选地平面。1.3.3电源层、地层、信号层的相对位置对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个EMC工程师都不能回避的话题;单板层的排布一般原则:a.元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布11线提供参考平面;b.所有信号层尽可能与地平面相邻;c.尽量避免两信号层直接相邻;d.主电源尽可能与其对应地相邻;e.兼顾层压结构对称。对于母板的层排布,鉴于我司现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则:a.元件面、焊接面为完整的地平面(屏蔽);b.无相邻平行布线层;c.所有信号层尽可能与地平面相邻;d.关键信号与地层相邻,不跨分割区。注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。鉴于篇幅有限,本文仅列出一般原则,供大家参考。以下为单板层的排布的具体探讨:*四层板,优选方案1,可用方案3。方案电源层数地层数信号层数12341112SGPS2112GSSP123112SPGS方案1TOPGNDPOWERBOTTOM此方案为现行四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP层;至于层厚设置,有以下建议:*满足阻抗控制*芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM层,即采用方案2:GNDPOWERS1S2此方案为了达到想要的屏蔽效果,至少存在以下缺陷:*电源、地相距过远,电源平面阻抗较大*电源、地平面由于元件焊盘等影响,极不完整*由于参考面不完整,信号阻抗不连续13实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。但在个别单板中,方案2不失为最佳层设置方案。以下为方案2在XX产品的接口滤波板中的使用案例;案例(特例):在XX产品的接口滤波板XXX的设计过程中,出现了以下情况:A,整板无电源平面,只有GND、PGND各占一个平面;B,整板走线简单,但作为接口滤波板,布线的辐射必须关注;C,该板贴片元件较少,多数为插件。分析:1,由于该板无电源平面,电源平面阻抗问题也就不存在了;2,由于贴片元件少(单面布局),若表层做平面层,内层走线,参考平面的完整性基本得到保证,而且第二层可铺铜保证少量顶层走线的参考平面;3,作为接口滤波板,PCB布线的辐射必须关注,若内层走线,表层为GND、PGND,走线得到很好的屏蔽,传输线的辐射得到控制;鉴于以上原因,在本板的层的排布时,我们决定采用方案2,即:GND、S1、S2、PGND,由于表层仍有少量短走线,而底层则为完整的地平面,我们在S1布线层铺铜,保证了表层走线的参考平面;在传输XX产品的五块接口滤波板中,出于以上同样的分析,设计人员吴均决定采用方案2,同样不失为层的设置经典。列举以上特例,就是要告诉大家,要领会层的排布原则,而非机械照搬。14方案3:TOPGNDPOWERBOTTOM此方案同方案1类似,适用于主要器件在BOTTOM布局或关键信号底层布线的情况;一般情况下,限制使用此方案;*六层板,优选方案3,可用方案1,备用方案2、4方案电源地信号1234561114S1GS2S3PS42114S1S2GPS3S43123S1G1S2PG2S34123S1G1S2G2PS3对于六层板,优先考虑方案3,优选布线层S2,其次S3、S1。主电源及其对应的地布在4、5层,层厚设置时,增大S2-P之间的间距,缩小P-G2之间的间距(相应缩小G1-S2层之间的间距),以减小电源平面的阻抗,减少电源对S2的影响;在成本要求较高的时候,可采用方案1,优选布线层S1、S2,其次S3、S4,与方案1相比,方案2保证了电源、地平面相邻,减少电源阻抗,但S1、S2、S3、S4全部裸露在外,只有S2才有较好的参考平面
本文标题:PCB-EMC设计规范
链接地址:https://www.777doc.com/doc-4271217 .html