您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 其它综合 > 材料科学基础 名词解释
第一部分名词解释第二章晶体学基础1、晶体结构:反映晶体中全部基元之间关联特征的整体。晶体结构有4种结构要素,质点、行列、面网、晶胞。晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。空间格子:为便于描述空间点阵的图形,可用许多平行的直线将所有阵点连接起来,于是就构成一个三维几何构架,称为空间格子。2、晶带定律:晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0。凡满足此关系的晶面都属于以[uvw]为晶带轴的晶带,故该关系式也称为晶带定律。布拉格定律:布拉格定律用公式表示为:2dsinx=nλ(d为平行原子平行平面的间距,λ为入射波长,x为入射光与晶面的夹角)。晶面间距:两相邻平行晶面间的平行距离。晶带轴:所有平行或相交于某一晶向直线的的晶面构成一个晶带,该直线称为晶带轴,属此晶带的晶面称为共带面。3、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。中间相:两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A,B两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。有序固溶体:当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。4、致密度:晶体结构中原子体积占总体积的百分数。配位数:晶体结构中任一原子周围最近邻且等距离的原子数。间隙相:当非金属(X)和金属(M)原子半径的比值rX/rM0.59时,形成的具有简单晶体结构的相,称为间隙相。间隙化合物:当非金属(X)和金属(M)原子半径的比值rX/rM0.59时,形成具有复杂晶体结构的相。5、单晶体:是指在整个晶体内部原子都按照周期性的规则排列。多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成。点阵畸变:在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。金属键:自由电子与原子核之间静电作用产生的键合力。范德华键:由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。同质异构体:化学组成相同由于热力学条件不同而形成的不同晶体结构。布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。配位多面体:原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。拓扑密堆相:由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。由于这类结构具有拓扑特征,故称这些相为拓扑密堆相。大角度晶界:多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10º的晶界。电子化合物:电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗塞里相。凡具有相同的电子浓度,则相的晶体结构类型相同。第三章晶体缺陷1、点缺陷(Pointdefects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。包括空位、间隙原子、杂质、溶质原子等。线缺陷(Lineardefects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。主要为位错dislocations。面缺陷(Planardefects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。包括晶界、相界、孪晶界、堆垛层错等。空位:晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位。肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷,这是晶体内原子的热运动的内部条件决定的。过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷。2、位错:当晶格中一部分晶体相对于另一部分晶体发生局部滑移时,滑移面上滑移区与未滑移区的交界线称作位错柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。螺型位错:位错线附近的原子按螺旋形排列的位错称为螺型位错。刃型位错:晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。混合位错:一种更为普遍的位错形式,其滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度。可看作是刃型位错和螺型位错的混合形式。单位位错:把柏氏矢量等于单位点阵矢量的位错称为单位位错。全位错:把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。扩展位错:通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。部分位错:柏氏矢量小于点阵矢量的位错。堆垛层错:实际晶体结构中,密排面的正常堆垛顺序有可能遭到破坏和错排,称为堆垛层错,简称层错。3、位错的滑移(守恒运动):在外加切应力作用下,位错中心附近的原子沿柏氏矢量b方向在滑移面上不断作少量位移(小于一个原子间距)而逐步实现。位错的攀移(非守恒运动):刃型位错在垂直于滑移面方向上的运动,主要是通过原子或空位的扩散来实现的(滑移过程基本不涉及原子的扩散)。位错反应:位错线之间可以合并或分解,称为位错反应。位错密度:单位体积内所包含的位错线总长度=L/V(cm-2)。一般,位错密度也定义为单位面积所见到的位错数目=n/A(cm-2)。交滑移:由于螺型位错可有多个滑移面,螺型位错在原滑移面上运动受阻时,可转移到与之相交的另一个滑移面上继续滑移。双交滑移:如果交滑移后的位错再转回到和原滑移面平行的滑移面上继续运动,则称为双交滑移。多滑移:当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的现象。滑移系:晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。扭折:位错交割形成的曲折线段在位错的滑移面上时,称为扭折。割阶:若该曲折线段垂直于位错的滑移面时,称为割阶。位错在某一滑移面上运动时,对穿过滑移面的其它位错(林位错)的交割包括扭折和割阶。位错滑移的特点1)刃型位错滑移的切应力方向与位错线垂直,而螺型位错滑移的切应力方向与位错线平行;2)无论刃型位错还是螺型位错,位错的运动方向总是与位错线垂直的;3)刃型位错引起的晶体的滑移方向与位错运动方向一致,而螺型位错引起的晶体的滑移方向与位错运动方向垂直;4)位错滑移的切应力方向与柏氏矢量一致;位错滑移后,滑移面两侧晶体的相对位移与柏氏矢量一致。5)对螺型位错,如果在原滑移面上运动受阻时,有可能转移到与之相交的另一滑移面上继续滑移,这称为交滑移(双交滑移)位错交割的特点1)运动位错交割后,在位错线上可能产生一个扭折或割阶,其大小和方向取决于另一位错的柏氏矢量,但具有原位错线的柏氏矢量(指扭折或割阶的长度和方向)2)所有的割阶都是刃型位错,而扭折可以是刃型也可是螺型的。3)扭折与原位错线在同一滑移面上,可随位错线一道运动,几乎不产生阻力,且在线张力的作用下易于消失;4)割阶与原位错不在同一滑移面上,只能通过攀移运动,所以割阶是位错运动的障碍---割阶硬化。4、孪晶:孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。孪生:晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。晶界:晶界是成分结构相同的同种晶粒间的界面。相界:具有不同结构的两相之间的分界面称为“相界”。晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。亚晶界:相邻亚晶粒间的界面称为亚晶界。亚晶粒:一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。界面:通常包含几个原子层厚的区域,其原子排列及化学成分不同于晶体内部,可视为二维结构分布,也称为晶体的面缺陷,包括外表面和内界面。外表面:指固体材料与气体或液体的分界面。内界面:分为晶粒界面、亚晶界、孪晶界、层错、相界面等。小角度晶界:相邻晶粒的位相差小于10º亚晶界一般为2º左右。对称倾斜晶界:晶界两侧晶体互相倾斜晶界的界面对于两个晶粒是对称的,其晶界视为一列平行的刃型位错组成。大角度晶界:相邻晶粒的位相差大于10º。5、表面能:晶体表面单位面积自由能的增加,可理解为晶体表面产生单位面积新表面所作的功γ=dW/ds。晶界能:不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。界面能:界面上的原子处在断键状态,具有超额能量。平均在界面单位面积上的超额能量叫界面能。位错的应变能:位错周围点阵畸变引起的弹性应力场,导致晶体能量的增加,称为位错的应变能或位错的能量。派-纳力:晶体滑移需克服晶体点阵对位错的阻力,即点阵阻力。位错的塞积:当位错运动到晶界附近时,受到晶界的阻碍而堆积起来,称位错的塞积。晶界特性1)晶粒的长大和晶界的平直化能减少晶界面积和晶界能,在适当的温度下是一个自发的过程;须原子扩散实现2)晶界处原子排列不规则,常温下对位错的运动起阻碍作用,宏观上表现出提高强度和硬度;而高温下晶界由于起粘滞性,易使晶粒间滑动;3)晶界处有较多的缺陷,如空穴、位错等,具有较高的动能,原子扩散速度比晶内高;4)固态相变时,由于晶界能量高且原子扩散容易,所以新相易在晶界处形核;5)由于成分偏析和内吸附现象,晶界容易富集杂质原子,晶界熔点低,加热时易导致晶界先熔化;过热6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,晶界腐蚀比晶内腐蚀速率快。第四章扩散1、柯肯达尔效应:反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散速率快的组元一侧移动。上坡扩散:溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。表明扩散的驱动力是化学位梯度而非浓度梯度。反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散。间隙扩散:这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。稳态扩散:在稳态扩散过程中,扩散组元的浓度只随距离变化,而不随时间变化。非稳态扩散:扩散组元的浓度不仅随距离x变化,也随时间变化的扩散称为非稳态扩散。2、共格相界:如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。非共格晶界:当两相在相界处
本文标题:材料科学基础 名词解释
链接地址:https://www.777doc.com/doc-4293944 .html