您好,欢迎访问三七文档
提高训练:一、简答题1、如图,矩形ABCD的长AB=4cm.宽BC=3cm,P、Q以1cm/s的速度分别从A、B出发,沿AB、BC方向前进,经多少秒后P、Q之间的距离为2cm?2、如图,直线表示草原上一条河,在附近有A、B两个村庄,A、B到的距离分别为AC=30km,BD=40km,A、B两个村庄之间的距离为50km.有一牧民骑马从A村出发到B村,途中要到河边给马饮一次水。如果他在上午八点出发,以每小时30km的平均速度前进,那么他能不能在上午十点三十分之前到达B村?3、《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)4、如图,四边形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.(1)求CD的长为__________.(2)点P从点B出发,以每秒1个单位的速度沿着边BC向点C运动,连接DP.设点P运动的时间为t秒,则当t为何值时,△PDC为等腰三角形?5、如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要多少cm?6、如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=15cm,AB=9cm求(1)FC的长,(2)EF的长.9、如图,Rt△ABC中,∠C=90°,现将直角边AC折叠到AB边上,点C落在AB边上的E点,折痕为AD.若AC=6,BC=8.求△ADB的面积.10、如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?11、已知三边满足,请你判断的形状,并说明理由.12、如图7,四边形ABCD中,.试判断的形状,并说明理由.13、在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.14、已知a、b、c为△ABC的三边,且,试判断△ABC的形状。15、已知四个三角形分别满足下列条件:①三角形的三边之比为1:1:;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有()个.A.4B.3C.2D.116、有下列判断①△ABC中,,则△ABC不直角三角形;②△ABC是直角三角形,,则;③△ABC中,,则△ABC是直角三角形;④若△ABC是直角三角形,则(,正确的有()A、4个B、3个C、2个D、1个参考答案一、简答题1、x=22、702+502-102=730030×2.5=7575<所以他不能在上午十点三十分之前到达B村3、【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得:BC===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h70km/h,∴这辆小汽车超速行驶.4、【解答】解:(1)过点D作DE⊥BC,垂足为E,∵AD∥BC,∠B=90°,∴四边形ABED是矩形,∴BE=AD=6,DE=AB=4,∴CE=BC﹣BE=9﹣6=3,在Rt△DCE中,CD===5.故答案为:5;(2)过点D作DE⊥BC,垂足为E,由题意得PC=9﹣t,PE=6﹣t.当CD=CP时,5=9﹣t,解得t=4;当CD=PD时,E为PC中点,∴6﹣t=3,∴t=3;当PD=PC时,PD2=PC2,∴(6﹣t)2+42=(9﹣t)2,解得t=.故t的值为t=3或4或..5、解答:解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.∴所用细线最短需要10cm.6、解:(1)由题意得:AF=AD=15在Rt△ABF中,∵AB=9∴∴FC=BC-BF=15-12=3(2)由题意得:EF=DE设DE的长为x,则EC的长为(9-x)在Rt△EFC中,由勾股定理可得:……(8分)x=5EF=59、∵AC=6,BC=8,∴。设DE的长为x,由折叠知CD=DE=x,AE=AC,BE=4,在Rt△BDE中,BD2-DE2=BE2,即(8-x)2-x2=42(4分)x=3,S△ADB==1510.【解答】解:连结AC,如图所示:在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC==10(米),∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴∠ACB=90°,∴该区域面积S=S△ACB﹣S△ADC=×10×24﹣×6×8=96(平方米),∴铺满这块空地共需花费=96×100=9600元.11、解:△ABC是直角三角形理由如下:∵∴∴∴∵即∴△ABC是直角三角形12、13、解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.因为S△ABC=AB•CD=BC•AC所以CD=240米.由于240米<250米,故有危险,因此AB段公路需要暂时封锁.14、二、选择题【解答】解:①因为12+12=()2三边符合勾股定理的逆定理,故是直角三角形;②因为92+402=412三边符合勾股定理的逆定理,故是直角三角形;③设最小的角为x,则x+2x+3x=180°,则三角分别为30°,60°,90°,故是直角三角形;④因为符合直角三角形的判定,故是直角三角形.所以有4个直角三角形.故选:A.16、C
本文标题:勾股定理提高题
链接地址:https://www.777doc.com/doc-4301808 .html