您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 高中数学导数压轴题(三)
第1页(共48页)高中数学导数压轴题(三)CollectbyLX2017.02.261.已知函数(Ⅰ)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅲ)对(Ⅱ)中的φ(a)和任意的a>0,b>0,证明:.2.已知函数.(1)如果a>0,函数在区间上存在极值,求实数a的取值范围;(2)当x≥1时,不等式恒成立,求实数k的取值范围.3.已知函数f(x)=﹣x3+x2+b,g(x)=alnx.(1)若f(x)在上的最大值为,求实数b的值;(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围;(3)在(1)的条件下,设,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.4.已知函数在x=1处取得极值2,(1)求f(x)的解析式;(2)设A是曲线y=f(x)上除原点O外的任意一点,过OA的中点且垂直于x轴的直线交曲线于点B,试问:是否存在这样的点A,使得曲线在点B处的切线与OA平行?若存在,求出点A的坐标;若不存在,说明理由;(3)设函数g(x)=x2﹣2ax+a,若对于任意x1∈R的,总存在x2∈[﹣1,1],使得g(x2)≤f(x1),求实数a的取值范围.5.已知函数f(x)=lnx﹣﹣bx(a≠0).(I)若b=2,且y=f(x)存在单调递减区间,求a的取值范围;(II)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.6.已知函数f(x)=lnx,g(x)=﹣lnx.(1)如果函数g(x)≤f(x)恒成立,求t的取值范围;第2页(共48页)(2)设函数F(x)=f(x)﹣+.试问函数F(x)是否存在零点,若存在,求出零点个数,若不存在,请说明理由.7.已知函数g(x)=(2﹣a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x),其中h′(x)是函数h(x)的导函数.(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当﹣8<a<﹣2时,若存在x1,x2∈[1,3],使得|f(x1)﹣f(x2)|>(m+ln3)a﹣2ln3+ln(﹣a)恒成立,求m的取值范围.8.已知函数f(x)=ex﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).9.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.10.已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若,解不等式f′(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出实数m的值;若不存在,请说明理由.11.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x.(a∈R,e为自然对数的底数)(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若函数f(x)在上无零点,求a的最小值;(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.12.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.13.已知函数f(x)=plnx+(p﹣1)x2+1.(1)讨论函数f(x)的单调性;(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;第3页(共48页)(3)证明:1n(n+1)<1+…+(n∈N+).14.已知函数为大于零的常数.(1)若函数f(x)在区间[1,+∞)内调递增,求a的取值范围;(2)求函数f(x)在区间[1,2]上的最小值;(3)求证:对于任意的成立.15.已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R(1)当a=1时,判断f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.16.设函数f(x)=(x﹣1)2+blnx,其中b为常数.(1)当时,判断函数f(x)在定义域上的单调性;(2)若函数f(x)的有极值点,求b的取值范围及f(x)的极值点;(3)求证对任意不小于3的正整数n,不等式都成立.17.已知函数f(x)=+lnx﹣2,g(x)=lnx+2x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.18.设函数f(x)=x﹣aex﹣1.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若f(x)≤0对x∈R恒成立,求a的取值范围;(Ⅲ)对任意n的个正整数a1,a2,…an记A=(1)求证:(i=1,2,3…n)(2)求证:A.19.已知函数f(x)=(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;(2)当a=1时,求f(x)在[]上的最大值和最小值;(3)当a=1时,求证对任意大于1的正整数n,lnn>…恒成立.20.已知函数f(x)=ln(x+)+,g(x)=lnx(1)求函数f(x)的单调区间;(2)如果关于x的方程g(x)=x+m有实数根,求实数m的取值集合;第4页(共48页)(3)是否存在正数k,使得关于x的方程f(x)=kg(x)有两个不相等的实数根?如果存在,求k满足的条件;如果不存在,说明理由.21.已知函数f(x)=alnx﹣ax﹣3(a∈R,a≠0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:.22.已知函数f(x)=(a+1)lnx+ax2+,a∈R.(1)当a=﹣时,求f(x)的最大值;(2)讨论函数f(x)的单调性;(3)如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|恒成立,求实数a的取值范围.23.已知函数f(x)=(a+)en,a,b为常数,a≠0.(Ⅰ)若a=2,b=1,求函数f(x)在(0,+∞)上的单调区间;(Ⅱ)若a>0,b>0,求函数f(x)在区间[1,2]的最小值;(Ⅲ)若a=1,b=﹣2时,不等式f(x)≤lnx•en恒成立,判断代数式[(n+1)!]2与(n+1)en﹣2(n∈N*)的大小.24.已知函数f(x)=ax﹣1﹣lnx(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围;(3)当x>y>e﹣1时,求证:.25.已知函数f(x)=﹣x3+ax2﹣4.(1)若f(x)在处取得极值,求实数a的值;(2)在(Ⅰ)的条件下,若关于x的方程f(x)=m在[﹣1,1]上恰有两个不同的实数根,求实数m的取值范围;(3)若存在x0∈(0,+∞),使得不等式f(x0)>0成立,求实数a的取值范围.26.已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[﹣2,2]上任意两个自变量的值x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.27.已知f(x)=xlnx,g(x)=x3+ax2﹣x+2(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;(Ⅲ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.28.已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.第5页(共48页)(1)求实数a的值;(2)若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(3)证明:对任意的正整数n,不等式都成立.29.设函数;(a∈R).(1)当a=0时,求f(x)的极值.(2)当a≠0时,求f(x)的单调区间.(3)当a=2时,对于任意正整数n,在区间上总存在m+4个数a1,a2,a3,…,am,am+1,am+2,am+3,am+4,使得f(a1)+f(a2)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,试问:正整数m是否有最大值?若有求其最大值;否则,说明理由.30.已知函数f(x)=ln(x+a)﹣x2﹣x在x=0处取得极值.(Ⅰ)求实数a的值;(Ⅱ)若关于x的方程f(x)=﹣x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(Ⅲ)证明:对任意的正整数n,不等式2+++…+>ln(n+1)都成立.第6页(共48页)2017年02月26日LX的高中数学组卷3参考答案与试题解析一.解答题(共30小题)1.(2015•临潼区校级模拟)已知函数(Ⅰ)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅲ)对(Ⅱ)中的φ(a)和任意的a>0,b>0,证明:.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.菁优网版权所有【专题】计算题;压轴题.【分析】(I)根据y=f(x)与y=g(x)交点处有共同的切线,建立方程组,解之可求出切点坐标,以及切线的斜率,从而求出切线方程;(Ⅱ)由条件知,然后讨论a的正负,利用导数研究函数的单调性,从而求出求出h(x)的最小值;(Ⅲ)由(Ⅱ)知φ'(a)=﹣2ln2a,从而分别求出、、的值,然后利用基本不等式可得结论.【解答】解:(Ⅰ),由已知得解得,∴两条直线交点的坐标为(e2,e),切线的斜率为,∴切线的方程为(Ⅱ)由条件知,∴(ⅰ)当a>0时,令h'(x)=0,解得x=4a2,∴当0<x<4a2时,h'(x)<0,h(x)在(0,4a2)上递减;当x>4a2时,h'(x)>0,h(x)在(4a2,+∞)上递增∴x=4a2是h(x)在(0,+∞)上的唯一极值点,从而也是h(x)的最小值点∴最小值φ(a)=h(4a2)=2a﹣aln4a2=2a(1﹣ln2a)(ⅱ)当a≤0时,在(0,+∞)上递增,无最小值,故h(x)的最小值φ(a)的解析式为φ(a)=2a(1﹣ln2a)(a>0)第7页(共48页)(Ⅲ)由(Ⅱ)知φ'(a)=﹣2ln2a对任意的a>0,b>0①②③故由①②③得.【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的单调性和最值,同时考查了基本不等式的应用,以及计算能力,属于中档题.2.(2015•长春四模)已知函数.(1)如果a>0,函数在区间上存在极值,求实数a的取值范围;(2)当x≥1时,不等式恒成立,求实数k的取值范围.【考点】实际问题中导数的意义;函数在某点取得极值的条件.菁优网版权所有【专题】压轴题;导数的综合应用.【分析】(1)因为,x>0,x>0,则,利用函数的单调性和函数f(x)在区间(a,a+)(其中a>0)上存在极值,能求出实数a的取值范围.(2)不等式,即为,构造函数,利用导数知识能求出实数k的取值范围.【解答】解:(1)因为,x>0,则,(1分)当0<x<1时,f'(x)>0;当x
本文标题:高中数学导数压轴题(三)
链接地址:https://www.777doc.com/doc-4302167 .html