您好,欢迎访问三七文档
地震力到底是怎么算出来的?[Part.1]很多人买房子的时候都会说这个房子「抗震」,那个房子不「抗震」。房子抗震的前提,当然是结构工程师在设计它的时候合理的考虑了抗震要求。那什么才叫满足抗震要求呢?或者说,结构工程师是怎么确定房子能不能抗震呢?设计房子的时候,需要考虑多大的地震力呢?最简单的情况是一层房子,比如说,我们有下面这个一层的小房子,那设计这个小房子的时候需要考虑多大的地震力呢?首先,我们要知道两个数据:房子的质量和房子的刚度。质量好理解,就是房子有多重,比如我们这个一层的小房子重300吨,也就是300000千克。刚度比较复杂一点,我们这个小房子的刚度是200千牛每毫米,什么意思呢?意思就是如果我拿一个变形金刚那么大的千斤顶来顶这个房子的房顶,当施加到200千牛的推力的时候,房子的房顶刚好侧移1毫米。刚度跟什么有关系呢?简单说,柱子越多,柱子越粗,就越难推动这个房子,所以刚度就越大。反过来,柱子越少,柱子越细,就容易被推动,刚度也就越小。另外呢,刚度还跟高度有关系,同样的柱子数量,同样的柱子粗细,一个房子比较高,相对就高瘦一些,下盘也就不那么稳了,刚度也就小一些,另一个房子比较矮,又矮又胖,这就难推动了,刚度也就会大一些。确定了这两个之后呢?接下来就是计算它的自振周期。这个小房子的自振周期是0.243秒。什么意思呢?大家都听说过军队齐步走过桥把桥振塌的小故事,原因就是齐步走的频率刚好贴近这座桥的自振频率,进而引发了共振。我们的小房子自振周期是0.243秒,也就是说,如果一群人站在房子边上一起推房子,大家动作一致,每0.243秒推一下,那这小房子就会产生共振,大家也就一块儿作死了。然后呢,我们需要知道这个房子所在场地的有关地震信息。简单说,同样的房子,是建在汶川、唐山,还是建在济南、上海,需要考虑的地震力完全不同。在我们的这个小例子里,假设这个小房子建在汶川,那么就是8度设防,第一组。都是在汶川,是建在软泥地里,还是建在硬石头上,抑或是建在普通土壤上,这些也会影响地震作用。到底属于哪种,如何考虑,我们需要地质工程师提供这块场地的相关地质资料。我们的这个小例子里,地质工程师告诉我们这块场地属于普通土壤,或者说,场地类别属于第III类。知道了8度,第一组,第III类这些信息,我们再拿出我们的国家抗震规范,就能确定我们这个场地的反应谱了。查表!结构工程师必备技能!也就是说,我们的最大地震影响系数最大值是0.16,场地特征周期是0.45秒。这些数据有什么用呢?根据规范里的公式,我们就能得到这块场地的反应谱了。这个过程比较复杂,简单说,就是根据我们上面的这些数值,对于我们这块场地,对于我们这个小房子,我们就得到了一个反应谱。同样的房子,不同的场地,反应谱也不一样。对于建筑结构设计,每一个房子,都有属于自己的反应谱。我们的这个小房子,反应谱是这样算的:所用到的三个基本参数就是我们上面得到的最大地震影响系数0.16、特征周期0.45和阻尼比0.05。阻尼比是建筑结构的固有特性,一般的房子我们可以取0.05,带有阻尼器啊、屈曲支撑啊这些特殊部件的房子,我们需要额外考虑不同的阻尼比。我们的小房子没有这些东西,所以取0.05。这个反应谱其实得出的是一个地震影响系数α和周期T之间的关系,α和T之间的函数图象是这样的:这又有什么用呢?我们上面已经知道了,我们这个小房子的自振周期是0.243秒。0.243秒对应什么呢?当横坐标T等于0.243秒的时候,纵坐标α等于0.16,也就是说,我们这个房子的地震影响系数就是0.16。这又有什么用呢?我们房子的质量是300吨,乘以9.8的重力加速度,相当于重力为2942千牛。我们的地震力呢?就等于2942千牛乘以这个0.16,也就是471千牛。这也就是我们设计的时候所需要考虑的地震力,地震来了,就相当于有471千牛的力在推房顶。换言之,我所有的柱子加起来,要足以抵抗这471千牛的力。否则的话,柱子不够结实,这471千牛的力加上来,柱子就折断了,房子也就塌了。如果柱子不够多呢?不够结实呢?那就得加粗加多了。但是请注意,柱子加粗加多之后,刚度就变了,不再是200千牛每毫米了。有了新的刚度值,以上的过程就需要从头再来一遍,得到一个新的地震力,再去比较新的设计里这些柱子够不够结实。如果还不行,继续修改,继续尝试,直到满足为止。我们再来看一下刚度的概念,施加200千牛的力,房顶侧移1毫米。现在我已经知道,地震的时候,相当于施加了471千牛的力,成比例放大,471是200的2.354倍,那我现在的位移就是2.354毫米。也就是说,近似理解,在地震的时候,房顶会被地震来回晃动2.354毫米。地震下的位移也是一个很重要的指标,如果位移过大,很可能房子就被晃散架了。对于一般的框架结构,规范的限值是550分之一。假设我们这个房子的高度是3米,那么550分之一就是5.455毫米。我们的小房子在地震下的位移值是2.354毫米,小于规范要求的5.455毫米,所以是满足要求的。如果不满足要求,还是柱子得加多加粗,以上全部过程从头再来。以上就是最最简单的地震力确定过程。如果不是一层的小房子,而是三层的房子呢?八十层的呢?为什么这个过程看上去不怎么精确呢?有没有什么更好的方法?这些问题我们会在后续的part里继续讨论。思考题:地震力的大小跟建筑物的质量和刚度直接相关,刚度则跟结构柱子的数量、粗细有关,跟结构墙体的长度、厚度有关。本来是屋顶,现在我堆上好多土,做成了屋顶菜园,就像《舌尖上的中国》第一季那一集,这会对地震力造成什么影响?普通土的重量大约为1.8吨每立方米,100平方米的屋顶菜园,假设土层厚10厘米,那就是多增加了18吨的重量。如果我装修的时候敲掉两根柱子,又有什么影响?如果我在结构墙体上开门洞呢?如果我在结构柱子和墙体上打洞穿水管呢?地震力到底是怎么算出来的?[Part.2]我们上一篇说到,我们小房子的地震力是471千牛。地震来了,就相当于有一个变形金刚那么大的千斤顶在水平方向推房顶,施加的推力是471千牛。但我们也知道,这只是「相当于」而已。实际地震的时候,并没有变形金刚在推房子,那房子又是怎么倒的呢?地震是如何作用到房子上的呢?想象这样一个场景,你站在原地不动,另一个人用力推你的肩膀,是不是很容易站不稳呢?再换一个场景,你站在公交车上,公交车突然刹车,你是不是也很容易站不稳呢?这两种情况对你而言,是不是等效的呢?有人推你,你脚在地面上不动,肩膀被人向后推,所以站不稳。公交车急刹车,脚跟着公交车地面减速,但上半身还维持着之前高速运动的惯性,所以也站不稳,这就是一个「惯性力」的概念。变形金刚推房子,就类似于别人推你;地震来了,就类似于把房子放在一个巨大的公交车上,然后公交车急刹车。实际上,并没有「力」直接作用到到房子上,而是房子的基础随着地面运动,而上半部分还保持静止,由于惯性就产生了「作用力」。问题来了,假设你站在公交车上,然后公交车急刹车,你站不稳的程度,或者说,你受到的惯性力的大小跟什么有关呢?事实上,起作用的只有一个指标,就是公交车的加速度。公交车刹车踩的轻柔,减速减的慢,你就不会有太大的感觉;刹车刹的狠,你就会被晃一下;急刹车一脚踩到底,估计你就趴地上了。加速度的大小如何表示呢?像有些跑车或者性能车上,不光有时速表、转速表,还会有加速度表,实时显示现在车辆的加速度,比如0.5g,-0.3g之类的。以重力加速度为单位,数字越大,说明加速度越大,坐在里面的人受到的惯性力也越大,也就是常说的加速时候的「推背」感越强烈,减速时候的惯性力也越大。地震也是一样,对于我们的小房子,质量一定,刚度一定,影响地震力大小的只有一个因素,就是地面运动的加速度。拿我们的这个小房子来说,重量是2942千牛,乘以0.16,得到的地震力是471千牛。换言之,这其实就相当于地面加速度为0.16g。地震中的地面运动加速度,我们可以用仪器实际测量,这些第一手的测量结果,就是我们进行抗震分析的基础。比如下面这些数据就是1995年阪神地震的实测地面加速度,每隔0.02秒测量一次,共测量了2400次,共持续48秒,加速度的单位为g。把这些数据表示成图像,横坐标为时间,纵坐标为加速度。什么意思呢?我们前面的例子里,相当于地面加速度是0.16g,也就是说,我们近似认为,地震到来的这48秒内,地面加速度一直是0.16,没有变化。但实际上呢,真实地震加速度的变化非常不规律,其实是上面的这个图形,一会儿是+0.1,一会儿+0.5,一会儿又是0,一会儿又是-0.4,随时间变化非常剧烈。换言之,我们近似认为一直是0.16g,其实是过于简化了这个问题。由于地震加速度的来回变化,实际上这是一个复杂的动力学系统。如果我们认为加速度一直是0.16g,那么房顶的位移就是我们之前得到的2.354毫米。但现在看来,加速度并不是恒定的0.16,而是一直在变化,那么我们的房顶位移也就不再是2.354毫米,也是一直在变化。那么我们已知地面加速度的变化,如何求出相应的房顶位移的变化呢?这个过程就复杂了,有很多种数值计算方法,包括CentralDifferenceMethod、Newmark’sAverageAccelerationMethod、Newmark’sLinearAccelerationMethod等等。我们继续我们的小例子,用Newmark’sAverageAccelerationMethod来求解,假设地震就是上面1995年的阪神地震。首先我们得进行相应的单位变换,方便起见,所有的单位都转化为千牛、毫米和秒。然后就可以欢快的进行数值运算啦。有了Matlab,小伙伴们再也不用担心我的算数了。计算结果是这样的,下面的蓝色曲线就是我们的地面加速度,红色的就是相应的房顶位移。我们上一篇的例子,如果蓝色曲线是恒等于0.16的水平线,那么红色的曲线就是恒等于2.354的水平线;我们这一篇的例子,蓝色曲线是这样不断变化的,那么红色的曲线也相应不断变化。房子最大位移是多少呢?红色曲线的最大值是20.469毫米,最小值是-21.667毫米。也就是说,我们的这个小房子,如果是在1995年的阪神大地震中,来回晃动的最大位移将会达到21.7毫米。问题在于,我们的房子不是在大阪,而是在汶川。别着急,我们可以找到2008年汶川地震的实测记录,然后根据这个地震记录进行计算。步骤完全一样,只是把阪神地震的数据换成汶川地震的数据而已。事实上,阪神地震比较猛烈但是短暂,汶川地震持续时间非常长,为了方便读图,我只截取了前50秒的地面加速度和房顶位移。整个地震过程中,最大位移为7.832毫米。这个7.832毫米又有什么用处呢?首先,我们要核对它是不是超过了规范的限值。我们上一篇提到,限值为550分之一,也就是5.455毫米。7.832大于5.455,也就是说,我们的房子在真实的汶川地震作用下,位移已经超过了最大限值。我们需要重新修改设计,直到满足要求为止。其次,我们知道刚度的概念,当施加200千牛的水平力的时候,房顶位移为1毫米。那我们现在已经知道最大位移是7.832毫米,相当于施加了多少的水平力呢?很简单,等比例换算一下,这时候相对应的水平力是1566千牛。也就是说,此时我们房子的所有柱子加起来必须要承受1566千牛的作用力。那问题就来了,我们上一篇得到的结果是471,这一篇的结果是1566,差得也太多了。实际上,我们这里的分析都是基于弹性范围内,但实际上在汶川地震这样的强震下,结构会进入弹塑性状态,也就是说刚度k会发生变化。在做好抗震构造措施的前提下,地震力会做一定的延性折减。另外,我们这里只取了一个记录数据,不排除数据本身有误差,实际的工作中,应该选取多个记录来源的多条地震波,逐一分析,然后再综合考虑。同样的小房子,上一篇我们用的是查表查规范的反应谱法,这一篇我们用的是数值计算的动力时程法。这两者之间有什么联系吗?规范里反应谱的参数又是如何确定的?我们会在后续的内容里继续探讨。笔记:1.地震力不是直接作用在结构上的力,而是由于惯性这一物体自身的固有物理属性产生的,由于地面加速度和结构沿高度的加速度
本文标题:地震怎么计算
链接地址:https://www.777doc.com/doc-4308063 .html