您好,欢迎访问三七文档
分部积分法由函数乘积的微分公式,)(d)d()d(vuuvuv移项得,)d()d()(duvuvvu(1)dduvuvvu对上式两端同时积分,得公式(1)或公式(2)称为分部积分公式.(2)ddxu'vuvxuv'或例1求.dsinxxxcosdddsind,则,,则,令xvxuxxvxu解xxxxxxxd)cos(cosdsin.sincosCxxxxxxxdcoscos注意:1.使用分部积分公式由求v时,v不必添加常数C.vd2.使用分部积分公式的目的是在于化难为易,解题的关键在于恰当的选择和u.vd例2求.dtanarcxxx解ddarctan,,令xxvxuxxxxxxxxd112arctan21darctan222d)111(21arctan2122xxxx.arctan212arctan212Cxxxx2d11d22,则,则xxvxu.de2xxx例3求d2dddee2xxvxxuxvux,,则,令解]d[2deeee22xxxxxxxxx则ddeee22xxxxxxxx则eeddddxxvxuxvxu,,则,令继续使用分部积分法.)22(2222eeeeCxCxxxxxxx.dln4xxx例4求)5(dlndln54xxxxx解xxxxd51ln545.25ln555Cxxx.dcosexxx例5求)(dcosdcoseexxxxx解xxxxxdsincosee)(dsincoseexxxxxxxxxxxdcossincoseee,dcossincosdcoseeeexxxxxxxxxx-这样便出现了循环公式,sincosdcos21eeeCxxxxxxx移项得).2()sin(cos2dcos1eeCCCxxxxxxCxxxxxx)cos(sin2dsinee类似地,有.d,dedcosdsin.1vxuxxxkxxxkxxnkxnnn余下的为令的不定积分,,,形如.,dddarcsin,darctan,dln.2uxxvxxxxxxxxxnnnn余下的为定积分,令的不形如一般情况下,u与dv按以下规律选择.d,ddcose,dsine.3应保持一致和部积分公式,两次选择因为要使用两次分,但应注意和任意选择的不定积分,可以形如vuvuxbxxbxaxax例6求.dlnxx)ln(dlndlnxxxxxx解.lndlnCxxxxxx例7求.dsinarcxx)arcsin(darcsindarcsinxxxxxx解xxxxxd1arcsin2.)1ln(21arctandarctan2Cxxxxx类似地,有.1arcsin2Cxxx例8求.dcosxx,有,,则令ttxxtxtd2d2解dsindcostttttdcos2dcostttxxcossin2dcos1Ctttxx于是,Cttt1cossindtsinsinttt).2C(cos2sin21CCxxx其中例9.d1arctan2xxxx求解法一于是有,令,dsecd,tanarctan2ttxtxtxtttttxxxxdsectan1tand1arctan222ttttdsectan)d(secttttttdsecsec1|tansec|lnsecCtttt.|1|lntanarc122Cxxxx解法二221darctand1arctanxxxxxxxxxxarctand1arctan122xxxxxd111arctan1222xxxxd11arctan122.|1|lntanarc122Cxxxx
本文标题:分部积分法
链接地址:https://www.777doc.com/doc-4312957 .html