您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2[1].1.1合情推理-归纳推理.ppt1111
内容结构“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.推理一般包括合情推理和演绎推理.在本章中,我们将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法、数学归纳法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。归纳推理歌德巴赫猜想的提出过程:3+7=10,3+17=20,13+17=30,10=3+7,20=3+17,30=13+17.偶数=奇质数+奇质数6=3+3,⑴一个偶数(不小于6)总可以表示成两个奇质数之和;⑵没有发现反例。8=3+5,10=5+5,12=5+7,14=7+7,16=5+11,…,1000=29+971,…归纳推理的定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理。例如:金受热后体积膨胀,银受热后体积膨胀,铜受热后体积膨胀,铁受热后体积膨胀,金、银、铜、铁是金属的部分小类对象,它们受热后分子的凝聚力减弱,分子运动加速,分子彼此距离加大,从而导致体积膨胀所以,所有的金属受热后都体积膨胀。例如:磨擦双手(S1)能产生热(P),敲击石头(S2)能产生热(P),锤击铁块(S3)能产生热(P),磨擦双手、敲击石头、锤击铁块都是物质运动;所以,物质运动能产生热。例:观察下图,可以发现1+3+5+……+(2n-1)=n2.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……归纳推理的几个特点;1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.需证明归纳推理的一般步骤:⑶检验猜想。⑵提出带有规律性的结论,即猜想;⑴对有限的资料进行观察、分析、归纳整理;练习:数一数图中的凸多面体的面数F、顶点数V和棱数E,然后探求面数F、顶点数V和棱数E之间的关系.四棱柱三棱锥八面体三棱柱四棱锥尖顶塔凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体695三棱柱凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体695三棱柱558四棱锥凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体695三棱柱558四棱锥9169尖顶塔6959558169凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔68126441286猜想凸多面体的面数F、顶点数V和棱数E之间的关系式为:F+V-E=2欧拉公式1、据说春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.鲁班的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.2、人们仿照鱼类的外形和它们在水中的沉浮原理,发明了潜水艇.二、情景引入:这个推理过程是归纳推理吗?可能有生命存在有生命存在温度适合生物的生存一年中有四季的变更有大气层大部分时间的温度适合地球上某些已知生物的生存一年中有四季的变更有大气层行星、围绕太阳运行、绕轴自转行星、围绕太阳运行、绕轴自转火星地球类比推理的几个特点;1.类比是从一种事物的特殊属性推测另一种事物的特殊属性.这种由两类对象具有某些类似特征,和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.三:1、类比推理定义4、由于类比推理的前提是两类对象之间具有某些可以清楚定义的类似特征,所以类比推理的关键是明确地指出两类对象在某些方面的类似特征。2、类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠。3、类比推理以旧的知识作基础,推测新的结果,具有发现的功能。2、类比推理的一般步骤:⑴找出两类对象之间可以确切表述的相似特征;⑵用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;⑶检验猜想。即观察、比较联想、类推猜想新结论在两类不同事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式,称为类比推理.(简称;类比)四、类比推理举例探究1:类比圆的特征,说说球的相关特征,并说明推理的过程。例1试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:空间中到一个定点的距离等于定长的点的集合.圆弦直径周长面积球截面圆大圆表面积体积圆的概念和性质球的概念和性质与圆心距离相等的两弦相等与圆心距离不相等的两弦不相等,距圆心较近的弦较长以点(x0,y0)为圆心,r为半径的圆的方程为(x-x0)2+(y-y0)2=r2圆心与弦(非直径)中点的连线垂直于弦球心与不过球心的截面(圆面)的圆点的连线垂直于截面与球心距离相等的两截面面积相等与球心距离不相等的两截面面积不相等,距球心较近的面积较大以点(x0,y0,z0)为球心,r为半径的球的方程为(x-x0)2+(y-y0)2+(z-z0)2=r2利用圆的性质类比得出求的性质球的体积34V=πR3球的表面积2S=4πR圆的周长S=2πR圆的面积2S=πR例2类比实数的加法和乘法,列出它们相似的运算性质.类比角度实数的加法实数的乘法运算结果若a,b∈R,则a+b∈R运算律(交换律和结合律)a+b=b+a(a+b)+c=a+(b+c)逆运算加法的逆运算是减法,使得方程a+x=0有唯一解x=-a单位元a+0=a若a,b∈R,则ab∈Rab=ba(ab)c=a(bc)乘法的逆运算是除法,使得ax=1有唯一解x=1/aa·1=a通过例1,例2你能得到类比推理的一般模式吗?类比推理的一般模式:所以B类事物可能具有性质d’.A类事物具有性质a,b,c,d,B类事物具有性质a’,b’,c’,(a,b,c与a’,b’,c’相似或相同)①abababab112233(,,)②abababab112233(,,)③aaaaR123(,,)()④abababab112233⑤ababababR112233//,,()⑥abababab1122330若,则aaaa123(,,)bbbb123(,,)ababab1122(,)①1122ababab(,)②aaaR12(,)()③ababab1122④若,则12aaa(,)bbb12(,)abababR1122//,()⑤ababab11220⑥2212||aaa⑦222123||aaaa⑦空间向量的性质例3.利用平面向量的性质类比得空间向量平面向量四、类比推理举例可以从不同角度确定类比对象:构成几何体的元素数目:四面体三角形探究2:你认为平面几何中的哪一类图形可以作为四面体的类比对象呢?运用类比法的关键是:寻找一个合适的类比对象基本原则是:要根据当前问题的需要,选择适当的类比对象。例4类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.直角三角形∠C=90°3个边的长度a,b,c2条直角边a,b和1条斜边c3个面两两垂直的四面体∠AOB=∠AOC=∠BOC=90°4个面的面积S1,S2,S3和S3个“直角面”S1,S2,S3和1个“斜面”S例4类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.ABCabcoABCc2=a2+b2S2△ABC=S2△AOB+S2△AOC+S2△BOC猜想:s1s2s3例:如图有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.1.每次只能移动1个金属片;2.较大的金属片不能放在较小的金属片上面.试推测;把n个金属片从1号针移到3号针,最少需要移动多少次?解;设an表示移动n块金属片时的移动次数.当n=1时,a1=1当n=2时,a2=3123当n=1时,a1=1当n=2时,a2=3解;设an表示移动n块金属片时的移动次数.当n=3时,a3=7当n=4时,a4=15猜想an=2n-1123__b__ab,a(ba6ba6154415448338333223221均为实数),请推测,,若,,,:已知练习635课堂练习:2:(2005年全国)计算机中常用的十六进位制是逢16进1的计算制,采用数字0-9和字母A-F共16个计数符号,这些符号与十进制的数的对应关系如下表;十六进位01234567十进位01234567例如用16进位制表示E+D=1B,则A×B=()十六进位89ABCDEF十进位89101112131415AA.6EB.72C.5FD.0B3:(2001年上海)已知两个圆①x2+y2=1:与②x2+(y-3)2=1,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为---------------------------------------------------------------------------------------------------------------------------------------------------------.(x-a)2+(y-b)2=r2与②(x-c)2+(y-d)2=r2(a≠c或设圆的方程为①b≠d),则由①式减去②式可得上述两圆的对称轴方程.
本文标题:2[1].1.1合情推理-归纳推理.ppt1111
链接地址:https://www.777doc.com/doc-4315298 .html