您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 5.3.2命题、定理、证明课件(七年级)
5.3.2命题、定理、证明主讲:汤海陆学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.(3)知道什么是定理和证明。学习重点:对命题结构的认识.问题1请同学读出下列语句(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.像这样判断一件事情的语句,叫做命题(proposition).命题的概念下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?1、对顶角相等;2、画一个角等于已知角;3、两直线平行,同位角相等;4、a、b两条直线平行吗?5、玫瑰花是动物;否是否是是对事情作了判断的语句是否正确?2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。如:画线段AB=CD。判断一件事情的语句叫做命题。注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。如:相等的角是对顶角。问题2判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()√√问题3你能举出一些命题的例子吗?问题4请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)如果两个角的和是90º,那么这两个角互余;(4)等式两边都加同一个数,结果仍是等式.(5)两点之间,线段最短.命题的结构命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.许多数学命题常可以写成“如果……,那么……”的形式.“如果”后面连接的部分是题设,“那么”后面连接的部分就是结论.命题的结构在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.这样的命题常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.(1)如果两个角是对顶角,那么这两个角相等;题设结论(2)如果两个角是直角,那么这两个角相等。题设结论问题5下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.如果两条直线被第三条直线所截,那么同旁内角互补;如果等式两边都加同一个数,那么结果仍是等式;如果两个数互为相反数,那么这两个数相加得0;如果两个角是同旁内角,那么这两个角互补;如果两个角互为对顶角,那么这两个角相等.问题7问题5中哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.√√√问题8请同学们举例说出一些真命题和假命题.命题的真假真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.问题7请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.ba问题1中的(1)(4)(5)它们的正确性是经过推理证实的,这样得到的真命题叫做定理(theorem).定理也可以作为继续推理的依据.问题2你能写出几个学过的定理吗?定理命题1在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.(3)这个命题的题设和结论分别是什么呢?题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.•证明•在许多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明。•下面我们以证明命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条。”穹顶空灵似镜,白云轻柔若纱。环渡在文殊塔下,聆听塔尖悦耳风铃,似袅袅梵音,萦回于浩瀚乾坤;似编钟古韵,叮当于朗朗晴空。环眺穹顶一周,心神眼线滞留在这座无名的文殊塔上,思绪奔放,心灵泛滥,滔滔地涌向那广袤无垠的蓝天,大地,任其自由翱翔。神圣而庄严的文殊菩萨静静地禅定在昏暗的塔里,瓜果贡品的艳丽增添了塔室的灵气,燃尽的高香狼藉在塔外,横躺竖卧,一看便知那些所谓的信徒还不够虔诚。只知道临时抱佛脚,不知道香火燃尽后的归宿该在哪里。我有心跪在菩萨面前替我那双儿女企求菩萨给他们增添一点智慧,可又想,算了,跪不跪菩萨也不会去眸你一眼,眸不眸菩萨也知道你心里心外那些鸟事。至于儿女的智慧,他们如果真是用了心,菩萨总会抽时间护佑的。所以,我用手把我的心摆了摆,尽量用肉眼看他不是歪的,也就算罢了。再说菩萨日理万机,哪有时间让你有求必应。我学识浅薄不知道菩萨在佛界属于哪一宗派?但我从书上知道净土宗讲究,因果轮回善恶福报,天堂地狱,过去现在未来。如果真是那样,我必须得买一台电子测平仪,时刻挂在胸前监测我那颗心的平整度,避免他向恶的那一方倾斜,为将来打点基础。在禅宗里讲究,人佛不二,心佛不二,佛(4)你能结合图形用几何语言表述命题的题设和结论吗?命题1在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.已知:b∥c,a⊥b.求证:a⊥c.(3)请同学们思考如何利用已经学过的定义定理来证明这个结论呢?已知:b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b(已知),又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∴∠2=∠1=90º(等量代换).∴∠1=90º(垂直的定义).∴a⊥c(垂直的定义).证明中的每一步推理都要有根据,不能想“当然”。命题2相等的角是对顶角.(2)判断这个命题的真假.(1)这个命题题设和结论分别是什么?题设:两个角相等;结论:这两个角互为对顶角.我们知道假命题是在条件成立的前提下,结论不一定成立,你能否利用图形举出一个反例说明当两个角相等时它们不一定是对顶角的关系.判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了。这种方法称为举反例。课堂小结1、命题:判断一件事情的语句叫命题。2、公理:人们长期以来在实践中总结出来的,并作为判断其他命题真假的根据的命题,叫做公理。3、定理:经过推理论证为正确的命题叫定理。也可作为继续推理的依据。4、在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明。5、判断一个命题是假命题,只要举出一个例子,说明该命题不成立就可以了,这种方法称为举反例。(1)正确的命题称为真命题,错误的命题称为假命题。(2)命题的结构:命题由题设和结论两部分构成,常可写成“如果…,那么…”的形式。3、公理举例:经过两点有且只有一条直线。2、线段公理:两点的所有连线中,线段最短。4、平行线判定公理:同位角相等,两直线平行。5、平行线性质公理:两直线平行,同位角相等。1、直线公理:3、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。同角或等角的补角相等。2、余角的性质:同角或等角的余角相等。4、垂线的性质:①过一点有且只有一条直线与已知直线垂直;5、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。1、补角的性质:3、对顶角的性质:对顶角相等。②垂线段最短。定理举例:内错角相等,两直线平行。同旁内角互补,两直线平行。6、平行线的判定定理:7、平行线的性质定理:两直线平行,内错角相等。两直线平行,同旁内角互补。定理举例:同位角相等,两直线平行。两直线平行,同位角相等归纳小结1.什么叫做命题?你能举出一些例子吗?2.命题是由哪两部分组成的?3.举例说明什么是真命题,什么是假命题.4什么是定理和证明?
本文标题:5.3.2命题、定理、证明课件(七年级)
链接地址:https://www.777doc.com/doc-4316820 .html