您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 测控仪器设计复习重点
1.1.测控仪器的概念是什么?测控仪器则是利用测量和控制的理论,采用机、电、光各种计量测试原理及控制系统与计算机相结合的一种范围广泛的测量仪器。1.4.测控仪器由哪几部分组成?各部分功能是什么?工作原理:Z向运动具有自动调焦功能,通过计算机对CCD摄像器件摄取图像进行分析,用调焦评价函数来判断调焦质量。被检测的印刷线路板或IC芯片的瞄准用可变焦的光学显微镜和CCD摄像器件来完成。摄像机的输出经图像卡送到计算机进行图像处理实现精密定位和图像识别与计算,并给出被检测件的尺寸值、误差值及缺陷状况。按功能将仪器分成以下几个组成部分:1基准部件5信息处理与运算装置2传感器与感受转换部件6显示部件3放大部件7驱动控制器部件4瞄准部件8机械结构部件基准部件测量的过程是一个被测量与标准量比较的过程,因此,仪器中要有与被测量相比较的标准量,标准量与其相应的装置一起,称为仪器的基准部件。传感器与感受转换部件测控仪器中的传感器是仪器的感受转换部件,它的作用是感受被测量,拾取原始信号并将它转换为易于放大或处理的信号。瞄准部件用来确定被测量的位置(或零位),要求瞄准的重复性精度要好。信息处理与运算装置数据处理与运算部件主要用于数据加工、处理、运算和校正等。可以利用硬件电路、单片机或微机来完成。显示部件显示部件是用指针与表盘、记录器、数字显示器、打印机、监视器等将测量结果显示出来。驱动控制器部件驱动控制部件用来驱动测控系统中的运动部件,在测控仪器中常用步进电机、交直流伺服电机、力矩电机、测速电机、压电陶瓷等实现驱动。控制一般用计算机或单片机来实现,这时要将一个控制接口卡插入到计算机的插槽中。机械结构部件仪器中的机械结构部件用于对被测件、标准器、传感器的定位,支承和运动,如导轨、轴系、基座、支架、微调、锁紧、限位保护等机构。所有的零部件还要装到仪器的基座或支架上,这些都是测控仪器必不可少的部件,其精度对仪器精度影响起决定作用。1.6.对测控仪器的设计要求有哪些?(1)精度要求精度是测控仪器的生命,精度本身只是一种定性的概念。(2)检测效率要求一般情况下仪器的检测效率应与生产效率相适应。(3)可靠性要求可靠性要求可由可靠性设计来保证。(4)经济性要求仪器设计时应采用各种先进技术,以获得最佳经济效果。(5)使用条件要求使用条件不同,仪器的设计也不同。在设计仪器时应慎重考虑,以满足不同使用条件的要求。(6)造型要求仪器的外观设计极为重要,优美的造型、柔和的色泽是人们选择产品的考虑因素之一,有利于销售,同时也会使操作者加倍爱护和保养仪器,延长使用寿命,提高工作效率。2.2.什么是原理误差,原始误差,瞬时臂误差,作用误差?原理误差仪器设计中采用了近似的理论、近似的数学模型、近似的机构和近似的测量控制电路所引起的误差。它只与仪器的设计有关,而与制造和使用无关。原始误差由机床、夹具、刀具和工件组成的机械加工工艺系统(简称工艺系统)会有各种各样的误差产生,这些误差在各种不同的具体工作条件下都会以各种不同的方式(或扩大、或缩小)反映为工件的加工误差。能转换成瞬时臂误差的源误差多发生在转动件上;而既不能换成瞬时臂误差,其方向又不与作用线方向一致的源误差多发生在平动件上。2.3.误差的分类及表示方法按误差的数学性质分1)随机误差是由大量的独立微小因素的综合影响所造成的,其数值的大小和方向没有一定的规律,但就其总体而言,服从统计规律,大多数随机误差服从正态分布。2)系统误差由一些稳定的误差因素的影响所造成,其数值的大小的方向在测量过程中恒定不变或按一定的规律变化。3)粗大误差粗大误差指超出规定条件所产生的误差,一般是由于疏忽或错误所引起,在测量值中一旦出现这种误差,应予以剔除。按被测参数的时间特性分1)静态参数误差2)动态参数误差按误差间的关系分1)独立误差2)非独立误差绝对误差:被测量测得值x与其真值(或相对真值)x0之差特点:有量纲、能反映出误差的大小和方向。相对误差:绝对误差与被测量真值的比值特点:无量纲2.4误差的来源与性质原理误差仪器设计中采用了近似的理论、近似的数学模型、近似的机构和近似的测量控制电路所引起的误差。它只与仪器的设计有关,而与制造和使用无关。(1)采用近似的理论和原理进行设计是为了简化设计、简化制造工艺、简化算法和降低成本。(2)原理误差属于系统误差,使仪器的准确度下降,应该设法减小或消除。(3)方法:•采用更为精确的、符合实际的理论和公式进行设计和参数计算。•研究原理误差的规律,采取技术措施避免原理误差。•采用误差补偿措施。制造误差产生于制造、支配以及调整中的不完善所引起的误差。主要由仪器的零件、元件、部件和其他各个环节在尺寸、形状、相互位置以及其他参量等方面的制造及装调的不完善所引起的误差。运行误差仪器在使用过程中所产生的误差。如力变形误差、磨损和间隙造成的误差,温度变形引起的误差,材料的内摩擦所引起的弹性滞后和弹性后效,以及振动和干扰等。(一)力变形误差(二)测量力(三)应力变形(四)磨损(五)间隙与空程(六)温度(七)振动与干扰(八)干扰与环境波动引起的误差3.2.归纳测控仪器的设计流程测控仪器总体设计,是指在进行仪器具体设计以前,从仪器自身的功能、技术指标、检测与控制系统框架及仪器应用的环境和条件等总体角度出发,对仪器设计中的全局问题进行全面的设想和规划。要考虑的主要问题有:1.设计任务分析2.创新性构思(所能达到的新功能,所实现的新方法,所反映出的新技术,新理论等)3.测控仪器若干设计原则的考虑4.测控仪器若干设计原理的斟酌5.测控仪器工作原理的选择和系统设计6.测控系统主要结构参数与技术指标的确定7.仪器总体的造型规划3.3.测量仪器设计的六项基本原则是什么?共有六项设计原则:一、阿贝(Abbe)原则及其扩展阿贝原则定义:为使量仪能给出正确的测量结果,必须将仪器的读数刻线尺安放在被测尺寸线的延长线上。或者说,被测零件的尺寸线和仪器的基准线(刻线尺)应顺序排成一条直线。二、变形最小原则及减小变形影响的措施变形最小原则定义:应尽量避免在仪器工作过程中,因受力变化或因受温度变化而引起的仪器结构变形或仪器状态和参数的变化。三、测量链最短原则测量链定义:仪器中直接感受标准量和被测量的有关元件,如被测件、标准件、感受元件、定位元件等均属于测量链。四、坐标系统一原则在设计零件时,应该使零件的设计基面、工艺基面和测量基面一致起来,符合这个原则,才能使工艺上或测量上能够较经济地获得规定的精度要求而避免附加的误差。五、精度匹配原则在对仪器进行精度分析的基础上,根据仪器中各部分各环节对仪器精度影响程度的不同,分别对各部分各环节提出不同的精度要求和恰当的精度分配,这就是精度匹配原则。六、经济原则经济原则是一切工作都要遵守的一条基本而重要的原则。1)工艺性。2)合理的精度要求。3)合理选材。4)合理的调整环节。5)提高仪器寿命。3.4.测量仪器设计的基本原理有哪些?一、平均读数原理二、比较测量原理差动比较测量原理三、补偿原理3.5.阿贝误差产生的本质原因是什么?分析三坐标测量机测量某一工件时,哪个坐标方向上的各个平面内均能遵守阿贝原理阿贝原则定义:为使量仪能给出正确的测量结果,必须将仪器的读数刻线尺安放在被测尺寸线的延长线上。或者说,被测零件的尺寸线和仪器的基准线(刻线尺)应顺序排成一条直线。导轨间隙造成运动中的摆角由于标准刻线尺与被测件的直径不共线而带来测量误差导轨间隙造成运动中的摆角由于标准刻线尺与被测件的直径共线误差微小到可以忽略不计4.1、何谓导向精度?导轨设计有哪些要求?举出四种导轨组合,并说明其特点。导向精度动导轨运动轨迹的准确度,直线度。1)导轨的几何精度—导轨的几何精度包括导轨在垂直平面内与水平面内的直线度,导轨面间的平行度和导轨间的垂直度。2)接触精度—指动静导轨之间的微观不平度,它将影响导轨的接触变形。因此要求接触积大于80%。为此,要有粗糙度指标。对滑动摩擦导轨、动导轨mRa8.02.0;静导轨=0.1—0.4对滚动摩擦导轨mRa2.03)实际上因导轨引起的误差是很复杂的。以单轴方向导轨为例:其存在扭摆(Raw)误差、俯仰(Pitch)误差和偏转(Roll)误差,此外还有两维平行度(Straightness)误差、线性(Linear)误差。1)滑动摩擦导轨两导轨面间直接接触形成滑动摩擦。2)滚动导轨动静导轨面间有滚动体,形成滚动摩擦。3)静压导轨两导轨面间有压力油或压缩空气,由静压力使动导轨浮起形成液体或气体摩擦。4)弹性摩擦导轨利用材料弹性变形,使运动件做精密微小位移。这种导轨仅有弹性材料内分子间的内摩擦。4.2、基座与支承件的基本要求是什么?1)支承件的结构特点和设计要求基座立柱结构尺寸较大,结构比较复杂,要承受外载荷及其变化,受热变形影响较大。A要具有足够的刚度,力变形要小B稳定性好,内应力变形小C热变形要小D良好的抗振性2)支承件的结构设计内容刚度设计1)有限元分析法:2)仿真分析法:2)结构设计1)正确选择截面形状与外形结构:2)合理地选择和布置加强肋,以增加刚度,3)正确的结构布局,减小力变形4)良好的结构工艺性,减小应力变形5)合理地选择材料6)基座与支承件的壁厚、肋板、肋条厚度设计4.4、提高主轴系统的刚度有几种方法?①加大主轴直径,但导致机构尺寸加大。一般D取锥孔大端直径的1.5—2倍②合理选择支撑跨距③缩短主轴悬伸长度a/l0=1/2—1/4④提高轴承刚度4.8、什么是微位移技术?柔性铰链有何特点?微位移技术是一行程小、分辨力和精度都很高的技术,其精度要达到亚微米和纳米级。通常把应用微位移技术的系统称为微系统,它由微位移机构、精密检测装置和控制装置三部分组成。柔性铰链用于绕轴作复杂运动的有限角位移,它的特点是:无机械摩擦、无间隙、运动灵敏度高。利用柔性铰链原理研制的角度微调装置,在3′的角度范围内,达到了10-7(°)的稳定分辨率。近年来,柔性铰链又在精密微位移工作台中得到了实用,并被广泛地用于陀螺仪、加速度仪、精密天平等仪器仪表中。柔性铰链有很多种结构,最普通的形式是绕一个轴弹性弯曲,这种弹性变形是可逆的。4.11、试述压电效应和电致伸缩效应在机理上有何不同?简单说压电效应分正压电效应(顺压电效应)和逆压电效应(电致收缩效应)。前者是机械能转变为电能,后者是电能转变为机械能。具体说:当某些物质沿其某一方向被施加压力或拉力时,会发生变形,此时这种材料的两个表面将产生符号相反的电荷;当去掉外力后,它又重新回到不带电状态,这种现象叫压电效应。有时,也把这种机械能转变为电能的现象称为正压电效应或顺压电效应。反之,在某些物质的极化方向上施加电场,它会产生机械变形,当去掉外加电场后,该物质的变形随之消失,这种电能转变为机械能的现象,称为逆压电效应或电致收缩效应。分度值在计量器具的刻度标尺上,最小格所代表的被测尺寸的数值叫做分度值,分度值又称刻度值。分辨力显示装置能有效辨别的最小示值。对于数字式仪器,分辨力是指仪器显示的最末一位数字间隔代表的被测量值。对模拟式仪器,分辨力就是分度值。示值误差测量仪器的示值与对应输入量的真值之差。由于真值不能确定,实际上用的是约定真值,即常用某量的多次测量结果来作为约定真值。测量范围测量仪器误差允许范围内的被测量值。测量范围包含示值范围还包含仪器的调节范围。灵敏度测量仪器响应(输出)的变化除以对应的激励(输入)的变化。若输入激励量为∆X,相应输出是∆Y,则灵敏度表示为:S=∆Y/∆X灵敏度是仪器对被测量变化的反映能力。鉴别力(阈)使测量仪器产生未察觉的响应变化的最大激励变化,它表示仪器感受微小量的敏感程度。测量仪器的准确度测量仪器的准确度是一个定性的概念,它是指测量仪器输出接近于真值的响应的能力。测量仪器的示值误差测量仪器的示值与对应输入量的真值之差。
本文标题:测控仪器设计复习重点
链接地址:https://www.777doc.com/doc-4323752 .html