您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 新定义题型(专题五)
新定义题型(专题五)1.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”,等等.(1)设A=3xx-2-xx+2,B=x2-4x,求A与B的积;(2)提出(1)的一个“逆向”问题,并解答这个问题.2.设关于x的一次函数11bxay与22bxay,则称函数)()(2211bxanbxamy(其中1nm)为此两个函数的生成函数.(1)当x=1时,求函数1xy与xy2的生成函数的值;(2)若函数11bxay与22bxay的图象的交点为P,判断点P是否在此两个函数的生成函数的图象上,并说明理由.3.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”):①等腰梯形是旋转对称图形,它有一个旋转角为180°.()②矩形是旋转对称图形,它有一个旋转角为180°.()(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是.(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形...,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.4.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).5.按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a0)将数据进行变换,请写出一个满足上述要求的这种关系式。(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)6.对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(-l,O),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)(1)若已知M(0,1),N(0-l)△ABM≌△ABN(0-l).请通过计算判断ABMC与ABNC是否为全等抛物线;(2)在图10-2中,以A、B、M三点为顶点,画出平行四边形.①若已知M(0,л),求抛物线ABMC的解析式,并直接..写出所有过平行四边形中三个顶点90且能与ABMC全等的抛物线解析式....②若已知M(m,n),当m,n满足什么条件时,存在抛物线ABMC?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABMC全等的抛物线,若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由,7、阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图8①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2)如图8②,若△ABC为直角三角形,且90C,在图8②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3)若△ABC是锐角三角形,且BCACAB,在图8③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形.ABECF①ACBABC②③图8
本文标题:新定义题型(专题五)
链接地址:https://www.777doc.com/doc-4324158 .html