您好,欢迎访问三七文档
函数的零点的定义:使f(x)=0的实数x叫做函数y=f(x)的零点()0()()fxyfxxyfx方程有实数根函数的图象与轴有交点函数有零点复习:问题1.能否求解以下几个方程(1)x2-2x-1=0(2)2x=4-x(3)x3+3x-1=0指出:用配方法可求得方程x2-2x-1=0的解,但此法不能运用于解另外两个方程.探索新授:00()()()0,(,),()0.xxyfxfafbabfx如果函数在一个区间[a,b]上的图像不间断,并且在它的两个端点处的函数值异号,即则这个函数在这个区间上至少有一个零点,即存在一点x使如果函数图像通过零点时穿过轴,则称这样的零点为变号零点,如果没有穿过轴,则称这样的零点为不变号零点Ox1x2x0xyab02xxx1如图,、为变号零点,为不变号零点.()DDxx.yfx0已知函数定义在区间上,求它在上的一个零点的近似值,使它满足给定的精确度0000ff11xabaab22000000000000步骤:第一步 在D内取一个闭区间[a,b],使f(a)与(b)异号,即f(a)(b)0.零点位于区间[a,b]中.第二步 取区间[a,b]的中点,则此中点对应的坐标为=+()()00000000101000001010()(1()0();(2)()(,]b3()(,]bbfxfafxxfxfxfaaxaaxfxfaxbax计算和),并判断()如果,则就是的零点,计算终止如果)0,则零点位于区间[中,令,;()如果)0,则零点位于区间[中,令,;1111111xabaab22110第三步 取区间[a,b]的中点,则此中点对应的坐标为=+()()11111111121211112121()(1()0();(2)(a)(x,]b3(a)(x,]bbfxfafxxfxffaxaaxffxbax计算和),并判断()如果,则就是的零点,计算终止如果)0,则零点位于区间[中,令,;()如果)0,则零点位于区间[中,令,;nnnnnn 继续实施上述步骤,直到区间[a,b],函数的零点总位于区间[a,b]上,当a和b按照给定的精确度所取得近似值相同时,这个相同的近似值就是函数y=f(x)的近似零点,计算终止.这时函数y=f(x)的近似零点满足给定的精确度.由图可知:方程x2-2x-1=0的一个根x1在区间(2,3)内,另一个根x2在区间(-1,0)内.xy1203y=x2-2x-1-1画出y=x2-2x-1的图象(如图)结论:借助函数f(x)=x2-2x-1的图象,我们发现f(2)=-10,f(3)=20,这表明此函数图象在区间(2,3)上穿过x轴一次,可得出方程在区间(2,3)上有惟一解.问题2.不解方程,如何求方程x2-2x-1=0的一个正的近似解(精确到0.1)?思考:如何进一步有效缩小根所在的区间?由于2.375与2.4375的近似值都为2.4,停止操作,所求近似解为2.4。数离形时少直观,形离数时难入微!2-3+xy1203y=x2-2x-1-12-3+2.5+2.25--2.375-2-3+2.25-2.5+2.375-2.4375+2-2.5+3+232.52-3+2.5+2.25-22.52.25由于2.375与2.4375的近似值都为2.4,停止操作,所求近似解为2.4。1.简述上述求方程近似解的过程x1∈(2,3)∵f(2)0,f(3)0x1∈(2,2.5)∴f(2)0,f(2.5)0x1∈(2.25,2.5)∴f(2.25)0,f(2.5)0x1∈(2.375,2.5)∴f(2.375)0,f(2.5)0x1∈(2.375,2.4375)∴f(2.375)0,f(2.4375)0∵f(2.5)=0.250∵f(2.25)=-0.43750∵f(2.375)=-0.23510∵f(2.4375)=0.1050通过自己的语言表达,有助于对概念、方法的理解!∵2.375与2.4375的近似值都是2.4,∴x1≈2.4解:设f(x)=x2-2x-1,x1为其正的零点对于在区间[a,b]上连续不断,且f(a)·f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两端点逐步逼近零点,进而得到零点(或对应方程的根)近似解的方法叫做二分法.问题4:二分法实质是什么?用二分法求方程的近似解,实质上就是通过“取中点”的方法,运用“逼近”思想逐步缩小零点所在的区间。问题3.如何描述二分法?例题:利用计算器,求方程2x=4-x的近似解(精确到0.1)怎样找到它的解所在的区间呢?在同一坐标系内画函数y=2x与y=4-x的图象(如图)能否不画图确定根所在的区间?方程有一个解x0∈(0,4)如果画得很准确,可得x0∈(1,2)数学运用(应用数学)解:设函数f(x)=2x+x-4则f(x)在R上是增函数∵f(0)=-30,f(2)=20∴f(x)在(0,2)内有惟一零点,∴方程2x+x-4=0在(0,2)内有惟一解x0.由f(1)=-10,f(2)=20得:x0∈(1,2)由f(1.5)=0.330,f(1)=-10得:x0∈(1,1.5)由f(1.25)=-0.370,f(1.5)0得:x0∈(1.25,1.5)由f(1.375)=-0.0310,f(1.5)0得:x0∈(1.375,1.5)由f(1.4375)=0.1460,f(1.375)0得:x0∈(1.375,1.4375)∵1.375与1.4375的近似值都是1.4,∴x0≈1.4问题5:能否给出二分法求解方程f(x)=0(或g(x)=h(x))近似解的基本步骤?1.利用y=f(x)的图象,或函数赋值法(即验证f(a)•f(b)<0),判断近似解所在的区间(a,b).;2.“二分”解所在的区间,即取区间(a,b)的中点21bax3.计算f(x1):(1)若f(x1)=0,则x0=x1;(2)若f(a)•f(x1)<0,则令b=x1(此时x0∈(a,x1));(3)若f(a)•f(x1)<0,则令a=x1(此时x0∈(x1,b)).;4.判断两个区间端点按照给定的精确度所取得近似值是否相同.相同时这个近似值就是所求的近似零点练习1:求方程x3+3x-1=0的一个近似解(精确到0.01)画y=x3+3x-1的图象比较困难,变形为x3=1-3x,画两个函数的图象如何?xy10y=1-3xy=x31有惟一解x0∈(0,1)练习2:下列函数的图象与x轴均有交点,其中不能用二分法求其零点的是()Cxy0xy0xy0xy0问题5:根据练习2,请思考利用二分法求函数零点的条件是什么?1.函数y=f(x)在[a,b]上连续不断.2.y=f(x)满足f(a)·f(b)0,则在(a,b)内必有零点.思考题从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查几个接点?123456789101112131415回顾反思(理解数学)课堂小结1.理解二分法是一种求方程近似解的常用方法.2.能借助计算机(器)用二分法求方程的近似解,体会程序化的思想即算法思想.3.进一步认识数学来源于生活,又应用于生活.4.感悟重要的数学思想:等价转化、函数与方程、数形结合、分类讨论以及无限逼近的思想.作业:P74A组1,2,习题2-4A组7练习B组1,2
本文标题:14【数学】2.4.2《求函数零点近似解的一种计算方法――二分法》课件(新人教B版必修1)
链接地址:https://www.777doc.com/doc-4343062 .html