您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 9.2.3分式的混合运算
马鞍山市金瑞中学初一数学备课组一、复习:1.分式的乘法、除法、加法、减法法则。acbdcdabadbcdcabcdabababcccacadbcadbcbdbdbdad2.练习:32)3(4422xxxxx2)3)(2(2xx除法转化为乘法之后可以运用乘法的交换律和结合律3231)2(22××xxxxxmnnmaa)(③nnnbaab)(④nmnmaaa①3.整数指数幂的运算性质:若m,n为整数,且a≠0,b≠0,则有②nmnmaaa23223)()2(abbaaba(2)221232)()2()()2(yxyxyxyx(3)例1.(1)4232)()(abcabccba)(4232)()(abcabccba)(解:(1)原式4422332)()()()(abcabccba444222336acbbaccba35cb分子、分母分别乘方例1.(1)4232)()(abcabccba)(4232)()(abcabccba)(2226233)(8)(babaaba226233)()(8)(bababaaba26)(8)(baabab23223)()2(abbaaba(2)221232)()2()()2(yxyxyxyx4264)()2()()2(yxyxyxyx把负整数指数写成正整数指数的形式积的乘方221232)()2()()2(yxyxyxyx(3)46)2(4)()2(yxyx22)()2(yxyx22)()2(yxyx同底数幂相乘,底数不变指数相加结果化为只含有正整数指数的形式4264)()2()()2(yxyxyxyx例2.计算:1.2.3.4.aaaaaaaaa2444122222)225(423xxxxxxxxxxxx4244222111128422aaaaaaaa1.解法一:aaaaaaaa42)2()1(4222aaaaaa4)2()2(4221aaaaaaaaaa24441222221.解法二:aaaaaaaaaaaa4244142222222)4)(2()1()2)(4()2)(2(aaaaaaaaaaaaaaaaa2444122222aaaaaa42142)2)(4()(422aaaaa21a2.解:2)2)(2(5423xxxxx292423xxxx)3(21x)225(423xxxxxxxxx)2)(2(2121x)2x)(2x()2x(1x)2x)(2x()2x(1xxxx22x43.解:xxxxxxxx42442224.解:111128422aaaaaaaa)1)(1(4)1)(2()2(4aaaaaaaaaaaa4)1)(1()1(41a仔细观察题目的结构特点,灵活运用运算律,适当运用计算技巧,可简化运算,提高速度,优化解题。例3.计算:xyxyxxyxyxx3232分析与解:原式yxxyxxyxyxx)(3232yxx2yxx2巧用分配律yxxxx1312322.ba1ba1)ba(1)ba(122把和看成整体,题目的实质是平方差公式的应用。ba1ba1分析与解:原式babababababa111111baba11222baa巧用公式繁分式的化简:1.把繁分式些成分子除以分母的形式,利用除法法则化简;2.利用分式的基本性质化简。例4.111111aa原式)111()111(aa11aaaa11aa练习1.2.xxxxxx24222122412232aaaa
本文标题:9.2.3分式的混合运算
链接地址:https://www.777doc.com/doc-4350277 .html