您好,欢迎访问三七文档
1二次根式提优题训练1.已知254245222xxxxy,则22yx=.2.化简22)1(111nn,所得的结果为()A.1111nnB.1111nnC.1111nnD.1111nn3.计算2001)13(2)13(2)13(199920002001=.4.若ab≠0,则等式abbba351成立的条件是.5.如果式子2)1(2xx化简的结果为32x,则x的取值范围是()A.x≤1B.x≥2C.1≤x≤2D.x06.如果式子aa11)1(根号外的因式移入根号内,化简的结果为()A.a1B.1aC.1aD.a17.已知)0,0(02yxyxyx,则yxyxyxyx4353的值为()A.31B.21C.32D.438.已知321a,那么aaaaaa2221211的值等于()A.)321(B.1C.32D.39.已知2323x,2323y,那么22yxxy=,22)()(yxxyyxxy值为.10.若有理数x、y、z满足)(2121zyxzyx,则3()xyz=11.设ba21027,其中a为正整数,b在0,1之间,则baba=.12.若xx11,则2)1(x=.13.正数m、n满足34424nnmmnm,则2002282nmnm=214.已知139与139的小数部分分别是a和b,则ab-3a+4b+8=.15.当1<x<4时,|x-4|+122xx=___________16.已知233xx=-x3x,则………………()(A)x≤0(B)x≤-3(C)x≥-3(D)-3≤x≤017若0<x<1,则4)1(2xx-4)1(2xx等于………………………()(A)x2(B)-x2(C)-2x(D)2x18.当a<0,b<0时,-a+2ab-b可变形为…………()(A)2)(ba(B)-2)(ba(C)2)(ba(D)2)(ba19.a2mn-mabmn+mnnm)÷a2b2mn=.20.化简(a+baabb)÷(baba+aabb-abba)(a≠b).21.当x=1-2时,则2222axxaxx+222222axxxaxx+221ax=.22.若0a1,则aaaa11)11(2122可化简为()23.已知11,5252ab,则227ab的值为。24.化简22111(1)nn,所得的结果为_____________.(拓展)计算222222222004120031141311312112111125.设a为5353的小数部分,b为336336的小数部分,则ab12的值为()26.设5151的整数部分为x,小数部分为y,求2212xxyy=.27.设1983的整数部分为a,小数部分为b,试求1abb=.28.设m、x、y均为正整数,且yxm28,则myx=_________.29.已知2215192xx,则221519xx的值为330.已知:7878x,7878y,求:yxxyyx2=.31.已知321a,求aaaaaaa22212121=.32.已知:a,b为实数,且22222aaab.求222abab=.33.已知21xx,那么191322xxxxxx的值等于.34.满足等式2003200320032003xyyxxyyx的正整数对(x,y)的个数是()A.1B.2C.3D.435.已知:aax1(0a1),求42422362222xxxxxxxxxxx=.36.已知123123xx,则)225(423xxxx=.37已知.,12n,且227143678mmann.则a的值等于().A.-5;B.5;C.-9;D.9.38若13x,则53)321()32(23xxx的值是()A.2B.4C.6D.839.已知514aa,则a26=.40.当220021x时,代数式20033)200120054(xx的值是()A.0B.-1C.1D.-2200341.已知,则a_________发展:已知,则a______。42.设等式()()axaayaxaay在实数范围内成立,其中a、x、y是两两不相等的实数,则22223xxyyxxyy的值是43.若abS、、满足357,23abSab,求S的最大值和最小值.44.
本文标题:二次根式提优题
链接地址:https://www.777doc.com/doc-4361154 .html