您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版八年级数学竞赛题【精品文档】
八年级数学竞赛题班级:姓名:一.选择题(共8小题,每题3分,共24分)1.若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<32.下列式子中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.5﹣1=B.x2•x3=x6C.(a+b)2=a2+b2D.=4.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A.5B.6C.7D.85.下列选项中,不能用来证明勾股定理的是()A.B.C.D.6.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.7.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A甲正确,乙错误B乙正确,甲错误C甲、乙均正确D甲、乙均错误8.如图,在矩形纸片ABCD中,AB=8,AD=4,把矩形沿直线AC折叠,点B落在E处,连接DE,其中AE交DC于P.有下面四种说法:①AP=5;②△APC是等边三角形;③△APD≌△CPE;④四边形ACED为等腰梯形,且它的面积为25.6.其中正确的有()个.A.1个B.2个C.3个D.4个A.1个B2个C3个D4个二.填空题(共6小题,每题4分,共24分)9.请写出一个图形经过一、三象限的正比例函数的解析式_________.10.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件_________,使ABCD成为菱形(只需添加一个即可)11.如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是_________.12.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是_________.13.按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB=1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,则第n个正方形与第n个等腰直角三角形的面积和Sn=_________.14如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是_________.15.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为_________.三.解答题16.计算:(2﹣)2012•(2+)2013﹣2﹣()0.17.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.18.先化简,再求值:,其中a=,b=第14题第15题第10题第11题第12题第13题19.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.20.已知点(,1)在函数y=(3m﹣1)x的图象上,(1)求m的值,(2)求这个函数的解析式.21.小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)22.如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1)△ABF≌△DEA;(2)DF是∠EDC的平分线.23.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.参考答案与试题解析一.选择题(共12小题)1.(2013•盐城)若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3考点:二次根式有意义的条件.1082555分析:根据被开方数大于等于0列式进行计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3.故选A.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.(2013•上海)下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.1082555专题:计算题.分析:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解答:解:A、=3,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=,不是最简二次根式,故此选项错误;故选:B.点评:本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.(2013•钦州)下列运算正确的是()A.5﹣1=B.x2•x3=x6C.(a+b)2=a2+b2D.=考点:二次根式的加减法;同底数幂的乘法;完全平方公式;负整数指数幂.1082555分析:根据负整数指数幂、同底数幂的乘法、同类二次根式的合并及完全平方公式,分别进行各选项的判断即可得出答案.解答:解:A、5﹣1=,原式计算正确,故本选项正确;B、x2•x3=x5,原式计算错误,故本选项错误;C、(a+b)2=a2+2ab+b2,原式计算错误,故本选项错误;D、与不是同类二次根式,不能直接合并,原式计算错误,故本选项错误;故选A.点评:本题考查了二次根式的加减运算、同底数幂的乘法及完全平方公式,掌握各部分的运算法则是关键.4.(2012•梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()A.5B.6C.7D.8考点:角平分线的性质;勾股定理.1082555分析:由PD⊥OA,OD=8,OP=10,利用勾股定理,即可求得PD的长,然后由角平分线的性质,可得PE=PD.解答:解:∵PD⊥OA,∴∠PDO=90°,∵OD=8,OP=10,∴PD==6,∵∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,∴PE=PD=6.故选B.点评:此题考查了角平分线的性质与勾股定理.此题比较简单,注意角的平分线上的点到角的两边的距离相等.5.下列选项中,不能用来证明勾股定理的是()A.B.C.D.考点:勾股定理的证明.1082555分析:根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.解答:解:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选:D.点评:此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.6.(2011•广安)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.B.5cmC.D.7cm考点:平面展开-最短路径问题.1082555分析:首先画出圆柱的侧面展开图,根据高BC′=6cm,PC=BC,求出PC′=×6=4cm,在Rt△AC′P中,根据勾股定理求出AP的长.解答:解:侧面展开图如图所示,∵圆柱的底面周长为6cm,∴AC′=3cm,∵PC′=BC′,∴PC′=×6=4cm,在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选B.点评:此题主要考查了平面展开图,以及勾股定理的应用,做题的关键是画出圆柱的侧面展开图.7.下列说法正确的有()(1)一组对边相等的四边形是矩形;(2)两条对角线相等的四边形是矩形;(3)四条边都相等且对角线互相垂直的四边形是正方形;(4)四条边都相等的四边形是菱形.A.1B.2C.3D.4考点:矩形的判定;菱形的判定;正方形的判定.1082555专题:证明题.分析:两条对角线平分且相等的四边形是矩形,四条边都相等的四边形是菱形,如果对角线互相垂直平分且相等,那么这个四边形是正方形.解答:解:(1)两组对边相等的四边形是平行四边形,故(1)错误;(2)两条对角线平分且相等的四边形是矩形,故(2)错误;(3)四条边都相等且对角线相等的四边形是正方形,故(3)错误;(4)四条边都相等的四边形是菱形,故(4)正确,所以正确的有1个,故选A.点评:考查平行四边形、矩形、菱形、正方形的判定方法.8.(2013•资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80考点:勾股定理;正方形的性质.1082555分析:由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.解答:解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=100﹣×6×8=76.故选C.点评:本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.9.(2013•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.考点:正方形的性质;勾股定理.1082555专题:压轴题.分析:利用勾股定理求出CM的长,即ME的长,有DE=DG,所以可以求出DE,进而得到DG的长.解答:解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选D.点评:本题考查了正方形的性质和勾股定理的运用,属于基础题目.10.(2013•玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确D.甲、乙均错误考点:菱形的判定.1082555分析:首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平
本文标题:人教版八年级数学竞赛题【精品文档】
链接地址:https://www.777doc.com/doc-4361547 .html