您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > Computer Algebra and Theorem Proving
ComputerAlgebraandTheoremProvingClemensBallarinDarwinCollegeUniversityofCambridgeAdissertationsubmittedforthedegreeofDoctorofPhilosophy2AbstractIstheuseofcomputeralgebratechnologybene cialformechanisedreason-inginandaboutmathematicaldomains?Usuallyitisassumedthatitis.Manyworksinthisarea,however,eitherhavelittlereasoningcontent,orusesymboliccomputationonlytosimplifyexpressions.Inworkthathasachievedmore,theusedmethodsdonotscaleup.Theytrustthecomputeralgebrasystemeithertoomuchortoolittle.Computeralgebrasystemsarenotasrigorousasmanyprovers.Theyarenotlogicallysoundreasoningsystems,butcollectionsofalgorithms.Weclassifysoundnessproblemsthatoccurincomputeralgebrasystems.Whilemanyalgorithmsandtheirimplementationsareperfectlytrustworthy,thesemanticsofsymbolsisoftenunclearandleadstoerrors.Ontheotherhand,morerobustapproachestointerfaceexternalreasonerstoproversarenotalwayspracticalbecausethemathematicaldepthofproofsalgorithmsincomputeralgebraarebasedoncanbeenormous.Ourownapproachtakesbothtrustworthinessoftheoverallsystemande ciencyintoaccount.Itreliesonusingonlyreliablepartsofacomputeralgebrasystem,whichcanbeachievedbychoosingasuitablelibrary,andderivingspeci cationsforthesealgorithmsfromtheirliterature.WedesignandimplementaninterfacebetweentheproverIsabelleandthecomputeralgebralibrarySumitanduseittoprovenon-trivialtheoremsfromcodingtheory.Thisisbasedonthemechanisationofthealgebraictheoriesofringsandpolynomials.Codingtheoryisanareawhereproofsdohaveasubstantialamountofcomputationalcontent.Also,itisrealistictoassumethattheveri cationofanencodingordecodingdevicecouldbeundertakenin,andindeed,besimpli edby,suchasystem.Thereasonwhysemanticsofsymbolsisoftenunclearincurrentcom-puteralgebrasystemsisnotmathematicaldi culty,butthedesignofthosesystems.ForGaussianeliminationweshowhowthesoundnessproblemcanbe xedbyasmallextension,andwithoutlosinge ciency.Thisisaprerequisiteforthee cientuseofthealgorithminaprover.34PrefaceThistechnicalreportisintendedtomakemyPh.D.dissertationmoreeas-ilyaccessible.ThedissertationwassubmittedinJuneandthevivavoceexaminationtookplaceinSeptember1999.Thisrevisionincludessomeimprovementsthatweresuggestedbymyexaminers.Mymechanisationofthetheoryofringsandpolynomialsmaybeusefultothosewhoworkonthemechanisationofmathematicsfromthisarea.ItwillbecomepubliclyavailableaspartofthedistributionofthetheoremproverIsabelle.Pleaserefertotheprover’shomepages:://~isabelle/An\electronicversionofthisdocumentcanbeobtainedfrommyhomepage: 1999byClemensBallarin.Allrightsreserved.56AcknowledgementsIwouldliketothankmysupervisorLarryPaulsonforsteeringmesafelythroughthe\adventurePh.D.Larryhadalwaystimetoanswermyques-tions,motivatedmewhenIthoughtthingsweregettingtoodi cultandhadtherightdoseofcriticismwhenIconsideredthingssimplerthantheyactuallywere.Iwasimpressedbyhise ciency,andIadmirehisabilitytofocusonthatwhatisimportant.Goodresearchcanonlybedoneinastimulatingenvironment.TheComputerLaboratory,despiteitssomewhatshabbybuildingsandfurni-ture,provedtobeanexcellentplacetobe.IremembermanyinterestingdiscussionsoverteaandwouldliketothankeveryoneintheComputerLab-oratory|andbeyond|whohelpedmewiththisproject.ImustnotforgetJacquesCalmetwhoseceaselesse ortstosetupinternationallinkswithinthescienti ccommunitywerealsotomybene t.IdonotthinkIwouldhavedonemyPh.D.atsuchanexcellentplaceotherwise.TheStudienstiftungdesdeutschenVolkesandtheCambridgeEuropeanTrusthaveprovidedfundingformyresearch.TheComputerLaboratory,theUniversit atdesSaarlandesandDarwinCollegehelpedwithtravelcosts.Last,butbynomeansleast,Iwouldliketothankmyparentsfortheirsupport.ThatIwaslivingsofarawayhasnotalwaysbeeneasyforthem.78ToMarthaandMaria10ContentsListofFigures15ListofTables171Introduction191.1SymbolicComputation......................191.2ComputerAlgebra........................211.3TheoremProving.........................241.4ComputationalStrengthofProvers...............251.5SuitableDomainsofApplication................261.5.1Analysis..........................261.5.2Algebra..........................271.5.3GeneratingFunctionTechniques............271.5.4CodingTheory......................281.6OutlineoftheDissertation....................282MakingtheIntegrationTrustworthy312.1SoundnessinComputerAlgebra................322.1.1MisleadinglyUniformInterface.............322.1.2TheSpecialisationProblem...............342.1.3Algorithmsthatareadhoc...............352.2TrustandCerti cates......................362.2.1ProofReconstruction...................362.2.2MetaTheoreticalExtensionoftheProver.......372.2.3TrusttheExternalReasoner..............392.3ReviewofEarlierWork.....................392.3.1Analytica.........................402.3.2InterfacebetweenIsabelleandMaple..........402.3.3BridgebetweenHOLandMaple............411112CONTENTS2.3.4Sapper...........................422.4OutlineofaNewApproach...................433DesignoftheInterface473.1Op
本文标题:Computer Algebra and Theorem Proving
链接地址:https://www.777doc.com/doc-4363827 .html