您好,欢迎访问三七文档
模态分析方法在发动机曲轴上的应用研究xx(xx大学xxxxxxxx学院,山西太原030051)摘要:综述模态分析在研究结构动力特性中的应用,介绍模态分析的两大方法:数值模态分析与试验模态分析。并着重介绍目前的研究热点一一工作模态分析。通过发动机曲轴的模态分析这一具体的实例,综述了运行模态分析国内外研究现状,指出了其关键技术、存在问题以及研究发展方向。关键词:模态分析数值模态试验模态工作模态Abstract:Sumsupmethodsofmodelanalysisappliedontheresearchofconfigurationdynamic;alcharacteristio.Itintroducestwomethodsofmodelanalysis:numericalvaluemodelanalysisandexperimentationmodelanalysis.Thenitstressesthehotspot-workingmodelanalysis.Somekeytechniques,unsolvedproblemsandresearchdirectionsofOMAwerealsodiscussed.Keywords:ModelanalysisNumericalvaluemodelanalysisExperimentationmodelanalysisWorkingmodelanalysis1、引言1.1模态分析的基本概念物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。模态分析方法主要分三类,分别是试验模态分析EMA、工作模态分析OMA和工作变形分析ODS。(1)试验模态分析(ExperimentalModalAnalysis,EMA),也称为传统模态分析或经典模态分析,是指通过输入装置对结构进行激励,在激励的同时测量结构的响应的一种测试分析方法。输入装置主要有力锤和激振器,因此,实验模态分析又分为力锤激励EMA技术和激振器激励EMA技术。(2)工作模态分析(OperationalModalAnalysis,OMA),也称为只有输出的模态分析,而在土木桥梁行业,工作模态分析又称为环境激励模态分析。这类分析最明显的特征是对测量结构的输出响应,不需要或者无法测量输入。当受传感器数量和采集仪通道数限制时,需要分批次进行测量。(3)工作变形分析(OperationalDeflectionShape,ODS),也称为运行响应模态。这类分析方法也只测量响应,不需要测量输入。但是它跟OMA的区别在于,OMA得到的是结构的模态振型,而ODS得到的是结构在某一工作状态下的变形形式。此时分析出来的ODS振型已不是我们常说的模态振型了,它实际是结构模态振型按某种线性方式叠加的结果。模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析[1]。振动模态是弹性结构固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内,各阶主要模态的特性,就可能预知结构在此频段内,在外部或内部各种振源作用下实际振动响应[2]。因此,模态分析是结构动态设计及设备故障诊断的重要方法。近十余年以来,模态分析的理论基础,已经由传统的线性位移实模态、复模态理论发展到广义模态理论,并被进一步引入到非线性结构振动分析领域,同时模态分析理论汲取了振动理论、信号分析、数据处理、数理统计以及自动控制的相关理论,结合自身的发展规律,形成了一套独特的理论体系,创造了更加广泛的应用前景。这一技术已经在航空、航天、造船、机械、建筑、交通运输和兵器等工程领域得到广泛应用[3]。1.2数值模态分析与试验模态分析现状及局限性模态分析过程如果是由有限元计算的方法取得的,则称为数值模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。两种方法各有利弊,目前的发展趋势是把有限元方法和试验模态分析技术有机地结合起来,取长补短,相得益彰[4]。利用试验模态分析结果检验、补充和修正原始有限元动力模型;利用修正后的有限元模型计算结构的动力特性和响应,进行结构的优化设计。数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元的不足是计算繁杂,耗资费时[5]。这种方法,除要求计算者有熟练的技巧与经验外,有些参数〔如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值[6]。试验模态分析是模态分析中最常用的,它与有限元分析技术一起成为解决现代复杂结构动力学问题的两大支柱。利用试验模态分析研究系统动态性能是一种更经济、更有实效的方法。首先,根据已有的知识和经验,在老产品基础上试制出一台新的模型;其次,用试验模态分析技术,对样机作全面的测试与分析,获得产品的动力特性,由此识别出系统的模态参数,建立数学模型,进而了解产品在实际使用中的振动、噪声、疲劳等现实问题;再次,在计算机上改变产品的结构参数,了解动态性能可能获得的改善程度,或者反过来,设计者事先指定好动力特性,由计算机来回答所需要的结构参数〔质量、刚度、阻尼)的改变量[7]。传统的试验模态分析方法是建立在系统输入输出数据均已知的基础上,利用激励和响应的完整信息进行参数识别。将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换分析,得到任意两点之间的机械导纳函数即传递函数。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型[8]。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预知结构物的实际振动的响应历程或响应谱。在试验模态分析中大致可以分为四个步骤:1)动态数据的采集及频响函数或脉冲响应函数分析;2)建立结构数学模型;3)参数识别;4)振形动画。与有限元方法相比,结构动力修改的问题在试验模态分析基础上要容易。传统的模态分析方法已经在桥梁、汽车和航空航天工程等几乎所有和结构动态分析有关的领域中得到广泛应用,数值模态分析与试验模态分析的方法在理论上已经趋于完善,然而这些方法在具体应用时还是存在局限性,因为对于某些实际工程结构,要获得输入激励的完整信息是难以实现的,或者根本就没有获得任何输入信息,具体表现为:1)海洋平台、建筑物以及桥梁等在风、浪以及大地脉动作用下引起的振动;导弹以及航天器在飞行运输过程中所产生的振动等,这些结构在实际工作时所承受的载荷往往是不可测量或很难测得,因而无法获得结构系统的激励输入信息;2)某些结构待识别的自由度很多,并且所受载荷的空间分布复杂,往往没有足够的传感器,无法得到完整的输入信息;3)所需要的载荷测试量〔力)与能够测试的〔加速度〕不是同一类信号,所需要的量不能直接测试,不能满足识别方法的要求;4)很多实际工作中,例如武器结构的振动试验,已经得到大量的振动响应数据,但却没有输入数据。然而目前根据实测振动响应数据往往只能得到诸如共振频率、最大峰值、总均方根值等特征量,而不能进一步用于对产品结构的动力特性分析,这就难以对产品的整体变形、响应特性作完整了解,大量的试验结构不能得到充分利用。针对传统的试验模态分析方法的局限性,发展仅基于响应数据的工作模态分析技术显得尤其重要。采用工作模态分析技术可以避免对输入信息的采集,这样也就解决了传统分析方法中很多状况下输入不可测的问题[9]。1.3工作模态分析现状及发展趋势工作模态分析常称为环境激励下的模态分析、只有输出或激励未知条件下的模态分析,正是近年来模态分析领域发展活跃,新理论、新技术的应用层出不穷的一个研究方向,被视为对传统试验模态分析方法的创新和扩展。工作模态分析的优点是:仅需测试振动响应数据,由于这些数据直接来源于结构实际所经受的振动工作环境,因而识别结果更符合实际情况和边界条件;无需对输入激励进行测试,节省了测试费用;利用实时响应数据进行模态参数识别,其结果能够直接应用于结构的在线健康监测和损伤诊断[10]。因此工作模态试验技术使试验模态分析,由传统的主要针对静止结构被扩展到处于现场运行状态的结构,不仅可以实现对那些无法测得载荷的工程结构进行所谓在线模态分析,而且利用实际工作状态下的响应数据识别的模态参数,能更加准确地反映结构的实际动态特性,已经在桥梁、建筑、机械领域取得实质性的进展。工作模态分析的理论和思想的提出早在20世纪70年代初期就已开始。工作模态的主要手段都是基于响应信号的时域参数辨识技术。随机减量技术最早被用来处理环境激励下的结构响应数据,这一技术主要是将结构的随机响应转化为结构的自由响应[11]。以此为基础基于时域的辨识方法Ibrahim时域法被提出,极大推动了工作模态分析技术的发展。随着控制理论和计算机技术的发展,多输入、多输出、参数辨识技术也被相继推出,广泛运用的时域模态辨识方法有多参考点复指数方法、特征系统实现算法等。目前工作模态辨识的其他主要方法还有功率谱密度函数的峰值提取方法、建立自回归滑动平均模型的时间序列分析法、结合时域参数识别的随机减量技术等[12]。1965年Clarkson和Mercer提出使用互相关函数估计承受白噪声激励下结构的频响特性,从而提出了当激励未知时使用相关函数替代脉冲响应函数的思想框架。20世纪90年代以来,美国Sandia国家实验室结合时域模态辨识方法,提出了NExT技术,利用结构在环境激励下的响应的相关函数进行工作模态识别形成上述技术思路后,美国Sandia国家实验室已经将此分析成果成功运用于航天涡轮机、地面载重、高速公路大桥和濒海建筑的工况信号测量和结构分析中[13]。在国内,南京航空航天大学振动工程研究所也一直从事着模态分析的研究工作,从传统的模态分析到工作模态分析,也包括只利用响应数据进行系统模态参数识别方法的研究,并且发表了多篇关于环境激励下工作模态参数识别的文章。中国振动协会,上海交通大学振动、冲击、噪声国家重点实验室,哈尔滨工业大学等也致力于研究工作模态参数识别方法[14]。现有和各种工作模态参数识别方法虽然都有一些很好的应用,但在理论上还需要完善。而且各种工作模态分析方法还有着各自的局限性,如时域法通常要求激励是平稳白噪声,结构系统具有线性时不变特性,其中Thrihim法不易剔除噪声和虚假模态;而时间序列法的模型阶次较难确定;基于响应相关函数的最小二乘复指数法和特征系统实现法要求数据样本长、
本文标题:模态分析与参数识别
链接地址:https://www.777doc.com/doc-4374234 .html