您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 数字设计基础与应用(第2版)第1章习题解答
1第1章数字逻辑基础1-1将下列二进制数转换为十进制数。(1)2(1101)(2)2(10110110)(3)2(0.1101)(4)2(11011011.101)解(1)3210210(1101)12120212(13)(2)75421210(10110110)1212121212(182)(3)124210(0.1101)1212120.50.250.0625(0.8125)(4)76431013210(11011011.101)2222222212864168210.50.125(219.625)1-2将下列十进制数转换为二进制数和十六进制数(1)10(39)(2)10(0.625)(3)10(0.24)(4)10(237.375)解(1)10216(39)(100111)(27)(2)10216(0.625)(0.101)(0.A)(3)近似结果:16210)3.0()00111101.0()24.0(D(4)10216(237.375)(1110'1101.011)(0ED.6)1-3将下列十六进制数转换为二进制数和十进制数(1)16(6F.8)(2)16(10A.C)(3)16(0C.24)(4)16(37.4)解(1)16210(6F.8)(1101111.1)(111.5)(2)16210(10A.C)(1'0000'1010.11)(266.75)(3)16210(0C.24)(1100.0010'01)(12.140625)(4)16210(37.4)(11'0111.01)(55.25)1-4求出下列各数的8位二进制原码和补码(1)10(39)(2)10(0.625)(3)16(5B)(4)2(0.10011)解(1)10(39)(1'0100111)(1'1011001)原码补码(2)(0.1010000)(0.1010000)10原码补码(0.625)(3)16(5B)(01011011)(01011011)原码补码(4)2(0.10011)(1.1001100)(1.0110100)原码补码21-5已知10X(92),10Y(42),利用补码计算X+Y和X-Y的数值。解10X(92)(1'1011100)(1'0100100)原码补码10Y(42)(0'0101010)(0'0101010)原码补码10(Y)(42)(1'0101010)(1'1010110)原码补码XY(1'0100100)(0'0101010)(1'1001110)=(1'0110010)=(50)补码补码10补码原码XYX(Y)(1'0100100)(1'1010110)(10'1111010)补码补码补码由于位数不够,发生溢出错误数值位增加一位:10X(92)(1'01011100)(1'10100100)原码补码(1'00101010)(1'11010110)10原码补码(-Y)=(-42)XYX(Y)(1'10100100)(1'11010110)([1]1'01111010)补码补码补码方括号中的1溢出后,余下的部分就是运算结果的补码。所以10XY(1'01111010)(1'10000110)(134)补码原码1-6分别用8421码、5421码和余3码表示下列数据(1)10(309)(2)10(63.2)(3)16(5B.C)(4)10(2004.08)解(1)10842154213(309)(0011'0000'1001)(0011'0000'1100)(0110'0011'1100)余码(2)10842154213(63.2)(0110'0011.0010)(1001'0011.0010)(1001'0110.0101)余码(3)1610842154213(5B.C)(91.75)(1001'0001.0111'0101)(1100'0001.1010'1000)(1100'0100.1010'1000)余码3(4)842154213(0010'0000'0000'0100.0000'1000)(0010'0000'0000'0100.0000'1011)(0101'0011'0011'0111.0011'1011)10余码(2004.08)1-7写出字符串TheNo.is308对应的ASCII码。若对该ASCII码字符串采用奇校验,写出带奇校验位的编码字符串(校验位放在最高位,采用16进制格式表示)。不含校验位时,字符串TheNo.is308的ASCII码为:54'68'65'20'4E'6F'2E'20'69'73'20'33'30'38包含奇校验位时,字符串TheNo.is308的ASCII码为:54'68'E5'20'CE'EF'AE'20'E9'73'20'B3'B0'381-8判断表1-7所示三种BCD码是否有权码。若是,请指出各位的权值。解表(a)所示BCD编码是无权码。对于表(b)所示BCD码是有权码,是2421BCD码。对于表(c)所示BCD码是有权码,是6,3,1,1BCD码。1-9用真值表证明分配律公式ABC(AB)(AC)。解列出等式两边函数表达式的真值表,如表1-9所示。表1-7(a)N10ABCD00000100012001130100401015011161000710018101191111表1-7(b)N10ABCD00000100012001030011401005010160110701118111091111表1-7(c)N10ABCD000111001020101301114011051001610007101081101911004表1-9ABCA+BC(A+B)(A+C)0000000100010000111110011101111101111111由于ABC取任意值时,函数ABC和(AB)(AC)相等,所以分配律ABC(AB)(AC)得证。1-10用逻辑代数的基本定律和公式证明(1)ABACBCABACBC(2)(ABC)(ABC)(ABC)ACB(3)AB(AB)AB解:ABACBC(ABCABC)(ABCABC)(ABCABC)(ABCABC)(ABCABC)(ABCABC)ABACBC解(ABC)(ABC)(ABC)[(ABC)(ABC)][(ABC)(ABC)](BC)(AB)ABBACBCACB解AB(AB)(ABAB)(AB)(ABAB)(AB)(ABAB)(AB)(ABAB)(AB)(ABAB)(AB)ABABAB(ABAB)(ABAB)AB解(1)(2)(3)51-11判断下列命题是否正确(1)若ABAC,则BC(2)若ABAC,则BC(3)若ABA,则B0(4)若AB,则ABA(5)若ABACABAC,,则BC(6)若ABC1,则ABC0解(1)不正确。例如,当ABC=110时,A+B=A+C,而此时B≠C。(2)不正确。例如,当ABC=001时,AB=AC,而此时B≠C。(3)不正确。例如,当AB=11时,A+B=A,而此时B=1。(4)正确。∵A=B,∴A+B=A+A=A。(5)正确。由A+B=A+C可知,当A=0时,B=C;而当A=1时,不能确定B=C。又由AB=AC可知,当A=1时,B=C。所以B=C。(6)不正确。因为()()()ABCABCABCABCABC1-12根据对偶规则和反演规则,直接写出下列函数的对偶函数和反函数(1)XACBCA(BCD)(2)YABBCDA(BC)解(1)X'(AC)(BC)[A(BCD)],X(AC)(BC)[A(BCD)](2)Y'(AB(BC)D)(ABC),Y(AB(BC)D)(ABC)1-13列出逻辑函数FABCBCA(BC),GA(BC)(ABC)的真值表,并分别用变量形式和简写形式写出标准积之和式与标准和之积式。解真值表如表1-13所示。变量形式和简写形式标准积之和式与标准和之积式:6FABCABCABCABCABCABCm(1,2,4,5,6,7)M(0,3)(ABC)(ABC)最小项表达式最小项表达式简写形式最大项表达式简写形式最大项表达式G(ABC)(ABC)(ABC)(ABC)(ABC)(ABC)M(0,1,2,3,4,5)m(6,7)ABCABC最大项表达式最大项表达式简写形式最小项表达式简写形式最小项表达式1-14求出下列函数的标准积之和式与标准和之积式,分别写出变量形式和简写形式。(1)FABCAC(2)FA(BC)解0F(A,B,C)A(BCBCBCBC)(AA)BCA(BB)CABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCm(1,2,3,4,5,6,7)MABC解:F(A,B,C)A(BC)ABCA(BB)(CC)(AA)BCABCABCABCABCABCm(2,4,5,6,7)M(0,1,3)(ABC)(ABC)(ABC)解:1-15用代数法化简逻辑函数(1)WABACBC(2)X(AB)ABABAB解WABACBCABACBC(ABB)(ACC)(AB)(AC)1BC1解:(1)(2)(1)表1-13真值表ABCFG00000001100101001100100101011011011111117X(AB)ABABAB(AB)ABAB(AB)ABABABAB(ABAB)(ABAB)AB解:1-16用卡诺图化简下列函数,写出最简与或式和最简或与式。(1)F(A,B,C)m(0,1,3,4,6)解最简与或式:FACACBCACACAB最简或与式:F(ABC)(AC)(2)F(A,B,C,D)m(1,2,4,6,10,12,13,14)解最简与或式:FBDCDABCABCD求最简或与式:F(CD)(BCD)(ABD)(ABC)或:F(CD)(BCD)(ABD)(ABD)BCA000111100111111BCA0001111000100(a)(b)图1-16(1)(2)CDAB000111100011011111111101CDAB000111100000010011010000(a)(b)图1-16(2)8(3)F(A,B,C,D)M(0,1,4,5,6,8,9,11,12,13,14)解最简与或式:FBCDBCDABC,或:FBCDBCDACD最简或与式为:FC(BD)(ABD)(4)F(A,B,C,D,E)m(1,2,6,8,9,10,11,12,14,17,19,20,21,23,25,27,31)解最简与或式:FABECDEBCEADEADEABCD最简或与式:F(ABDE)(ACDE)(ABDE)(ADE)(ACE)(ABCD)CDAB000111100011011111101CDAB000111100000010001100010000(a)(b)图1-16(3)CDEAB0000010110101101
本文标题:数字设计基础与应用(第2版)第1章习题解答
链接地址:https://www.777doc.com/doc-4381834 .html