您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 2013年中考数学100份试卷分类汇编:一元一次方程不等式
2013中考全国100份试卷分类汇编列方程解应用题(一元一次方程不等式)1、(2013•资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10人B.11人C.12人D.13人考点:一元一次不等式组的应用.3718684分析:先设预定每组分配x人,根据若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,列出不等式组,解不等式组后,取整数解即可.解答:解:设预定每组分配x人,根据题意得:,解得:11<x<12,∵x为整数,∴x=12.故选:C.点评:此题主要考查了一元一次不等式组的应用,解题的关键是读懂题意,根据关键语句若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人列出不等式组.2、(2013•宜昌)地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.A.970B.860C.750D.720考点:一元一次不等式组的应用.分析:根据2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,得出2013年底剩下江豚的数量的取值范围,即可得出答案.解答:解:∵2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%﹣15%范围内,∴2013年底剩下江豚的数量可能为1000×(1﹣13%)﹣100×(1﹣15%),即850﹣870之间,∴2013年底剩下江豚的数量可能为860头;故选B.点评:此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,根据题目中的数量关系,列出算式,求出2013年底剩下江豚的数量的范围.3、(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?考点:一元一次不等式的应用.3718684分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则:10x﹣5(20﹣x)>90解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.4、(2013•黔西南州)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.解答:解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B39块、方案二购买A22块,B38块.点评:本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.5、(2013•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:计算题.分析:(1)设长跳绳的单价是x元,短跳绳的单价为y元,根据长跳绳的单价比短跳绳单价的两倍多4元;购买2条长跳绳与购买5条短跳绳的费用相同,可得出方程组,解出即可;(2)设学校购买a条长跳绳,购买资金不超过2000元,短跳绳的条数不超过长跳绳的6倍,可得出不等式组,解出即可.解答:解:(1)设长跳绳的单价是x元,短跳绳的单价为y元.由题意得:.解得:.所以长跳绳单价是20元,短跳绳的单价是8元.(2)设学校购买a条长跳绳,由题意得:.解得:.∵a为正整数,∴a的整数值为29,3,31,32,33.所以学校共有5种购买方案可供选择.点评:本题考查了一元一次不等式及二元一次方程组的应用,解答本题的关键仔细审题,设出未知数,找到其中的等量关系和不等关系.6、(2013年临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?解析:(1)设购买A型学习用品x件,则B型学习用品为(1000)x.……(1分)根据题意,得2030(1000)26000xx………………(2分)解方程,得x=400.则10001000400600x.答:购买A型学习用品400件,购买B型学习用品600件.………………………(4分)(2)设最多购买B型学习用品x件,则购买A型学习用品为(1000)x件.根据题意,得20(1000)+3028000xx……………………(6分)解不等式,得800x.答:最多购买B型学习用品800件.……………………(7分)7、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)mm﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?考点:一次函数的应用;分式方程的应用;一元一次不等式组的应用.37分析:(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答;(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.解答:解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.点评:本题考查了一次函数的应用,分式方程的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系,(3)要根据一次项系数的情况分情况讨论.8、(2013•恩施州)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?考点:一元一次不等式组的应用;一元一次方程的应用.3718684分析:(1)设甲商品的进价为x元,乙商品的进价为y元,就有x=y,3x+y=200,由这两个方程构成方程组求出其解既可以;(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,根据不少于6710元且不超过6810元购进这两种商品100的货款建立不等式,求出其值就可以得出进货方案,设利润为W元,根据利润=售价﹣进价建立解析式就可以求出结论.解答:解:设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.答:商品的进价为40元,乙商品的进价为80元;(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,由题意,得,解得:29≤m≤32∵m为整数,∴m=30,31,32,故有三种进货方案:方案1,甲种商品30件,乙商品70件,方案2,甲种商品31件,乙商品69件,方案3,甲种商品32件,乙商品68件,设利润为W元,由题意,得W=40m+50(100﹣m),=﹣10m+5000∵k=﹣10<0,∴W随m的增大而减小,∴m=30时,W最大=4700.点评:本题考查了列二元依稀方程组解实际问题的运用,列一元一次不等式组解实际问题的运用,方案设计的运用,一次函数的性质的运用,在解答时求出利润的解析式是关键.9、(2013•黄冈)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)4530租金(元/辆)400300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.考点:一元一次不等式组的应用.3481324分析:根据设租用甲种货车x辆,则租用乙种6﹣x辆,利用某市民政局组织募捐了240吨救灾物资,以及每辆货车的载重量得出不等式求出即可,进而根据每辆车的运费求出最省钱方案.解答:解:设租用甲种货车x辆,则租用乙种6﹣x辆,根据题意得出:45x+30(6﹣x)≥240,解得:x≥4,则租车方
本文标题:2013年中考数学100份试卷分类汇编:一元一次方程不等式
链接地址:https://www.777doc.com/doc-4408030 .html