您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 由变质量运动方程到火箭的运动方程
1变质量物体的运动微分方程及火箭运动专业:物理学学号:084001091001姓名:秦瑞锋2变质量物体的运动微分方程及火箭运动秦瑞锋(物理与电气工程系09级物理学专业,084001091001)摘要:我们已经了解了一定质量的系统的运动学方程和动力学方程,但在实际问题中,系统的质量往往是变化(按一定规律减少或增加)的,我们所学的一定质量的物体的运动学或动力学方程却不适用于变质量系统,下面我们将研究变质量系统的运动学和动力学的若干方程,以及变质量物体的运动规律.关键字:变质量系统运动微分方程火箭动能定理动量定理一、变质量物体的基本运动微分方程在以前的学习中,我们接触到的质点或者质点组系统运动过程中,本身的质量不会发生变化。但在实际生活和自然现象中,在某时刻有一部分质量进入或者离开我么们所要研究的对象,经常有变质量系统的运动情况,例如,地球的质量由于陨石的降落而增加,飞行中的喷气飞机和火箭随着燃料的减少质量减少,浮冰由于溶化而减少质量,运动着的传送带在某时可添加或取走货物,下降的陨石由于空气的作用发生破碎或者燃烧使质量减少……这些质点系在运动过程中,不断发生系统外的质点并入,或系统内的质点分离,以致系统的总质量随时间不断改变,我们称这些系统为变质量系统。那么该用怎样的方法研究变质量系统的运动情况呢?我们可以假设在任何时刻,系统的分离或并入的质量是小量,两次发生分离或并入的时间间隔是小量,在这些理想的假设下,离开质点系的质量)(m2t和进入质点系的质量)(1tm是时间的连续可微函数,如果系统的质量mt在t=0时刻为m0,则它随着时间的变化规律为)()()(210tttmmmm,那对应的关于质量的一些物理量也是对时间的可微函数,得到微分方程后,进行积分,问题可解决。设变质量质点的质量m是时间t的函数,即m=m(t)。在瞬时t,质点的质量为m(t),质点对于定坐标系Oxyz的速度为v(图1),即将与之合并的微粒的质量为dm(t),其对Oxyz的速度为u。在瞬时t+dt,微粒与质点合并。于是质点的质量变为(m+dm),其对Oxyz的速度成为v+dv。对于质量分出的情况则dm<0,即dtdm为负。m和dm所组成的质点系在瞬时t的动量为mv+udm;在瞬时t+dt的动量为(m+dm)(v+dv)。在dt时间内,动量的增加tFpd为:pd=(m+dm))(vdv-(mv+udm)。3将上式展开并略去二阶微量,再根据牛顿第二定律,就得到变质量质点的基本运动微分方程:dtdmFdtvdmrv,(1)式中vuvr是微粒相对于变质量质点的速度。若把上式右端第二项记为Fr,就得:FrFvddtm(2)这是变质量质点的基本运动微分方程的另一种形式,式中F为外力。Fr具有力的量纲,称为反作用力。三、下面将根据变质量系统的微分方程来研究火箭的运动火箭的速度就是靠发动机向外喷气的方式来增加,火箭的运动也就是变质量物体的运动。Fr就是放出物质对火箭的推力T,即dtdmTvFrr,式中vuvr是放出物质相对于火箭的速度,由于0dtdm,推力T与相对速度为反向,故火箭在直线运动中的运动微分方程可写作:TFdtvdm,(3)式中F包括诸如重力和空气阻力等外力。这方程表明,火箭由于发动机喷出微粒而受到推力T。(1)火箭在真空中的运动设变质量质点P在重力场外的真空中运动,如果将火箭看做质点并忽略皆知的阻力、引力等,这样的变质量质点可以作为在宇宙空间中运动的火箭的模型,那么外力为0,由方程(3)可得火箭运动的方程:vrdtdmdtvdm,(4)其中vr是燃料相对于火箭的速度。vr的大小是常数并且与火箭的速度v相反。火箭沿着vr的方向作直线运动将方程(4)向Ox轴投影可得,4vrdtdmdtdvm,(5)其中vr是相对速度vr的大小。假设t=0时刻火箭的质量为m0,速度为v0,对(5)式积分可得V(t)=v0+])(1ln[0vtmmr。(6)从(6)式可以看出,火箭在某时刻的速度由两个因素决定:初速度;相对速度;火箭初始质量与当前质量之比。假设燃料的初始质量为mf,火箭在燃料燃烧完成时质量为ms,自然有mmmsf0,所以燃料燃烧完成时火箭的速度为)1ln(0mmvvvsfrw,(7)由(7)可知,火箭最终的速度不依赖于质量变化规律与燃料消耗的快慢无关,而是依赖于燃料的初始质量,火箭自身的质量,以及燃料产生气体的相对速度。(2)火箭在均匀重力场的竖直运动假设火箭在均匀重力场中运动,不考虑阻力。将火箭看做质点,初始速度为0,初始质量为m0。燃料分离时的相对速度为vr,大小为常数,方向竖直向下。假设火箭质量随时间的变化规律为etm0m。火箭受到的外力为重力,方向竖直向下,根据(3)式有,vrdtdmdtdvmgm,(8)将(8)式积分,可得火箭的速度,gttmm)(lnv0rv,(9)5设t=0时h=0,对(9)式进行积分可得,上升高度h随时间的变化公式为tmgdttmto20r21)(lnhv,(10)因为,tetm)(m0,再对(9)(10)进行计算可得,tgvr)(v(11)2)(21tghvr(12)从(11)、(12)可以看出,反作用力产生的加速度大于重力加速度,火箭才会上升。下面分析一下燃料燃烧完事火箭的高度,设燃质量为mf,火箭质量在燃烧结束时为ms,tsem0m,mmmfs0可解得)1(lntmmsfw,带入(11)、(12)可以得到在燃料燃烧完成时,火箭的速度和高度。tv)(wrwgv,(13)22)(2htvwrwag,(14)在燃料燃烧完后,火箭还会上升一段距离,它的质量不再变化,上升的距离gvw221h。上升的总距离)1(2)]1[ln(21gvvmmhhrrsfw,(15)6从(15)可知,随着的增加,火箭上升的总高度也会增加,当时总距离取得最大值g2)]1[ln(221maxhvmmhhrsfw(16)火箭在主动加速段取得上升高度最大值,需满足怎样的条件?从(14)可得3222)(hagvtrww,(17)由(16)可知当vrg2时,主动加速段上升的距离取得最大值g8)]1[ln(22vmmhrsfw(18)此时火箭上升的高度为g4)]1[ln(h22vmmrsf,为hmax的一半。参考文献:1、《理论力学》,刘延柱,杨海兴著,1991年6月第一版,高等教育出版社;2、《理论力学》,马尔契夫著,李俊峰译,2006年一月第一版,高等教育出版社;3、《理论力学》,周衍柏著,1979年四月第一版,高等教育出版社。
本文标题:由变质量运动方程到火箭的运动方程
链接地址:https://www.777doc.com/doc-441521 .html