您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 2020.1北京市丰台区初一年级第一学期期末-数学试题
2020北京丰台初一(上)期末数学2020.01考生须知1、本试卷共6页,共三道大题,29道小题,满分100分。考试时间90分钟;2、在试卷和答题卡上认真填写学校名称、姓名和考号;3、试题答案一律填涂或书写在答题卡上,在试卷上作答无效;4、在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。5、考试结束,将本试卷和答题卡一并交回。一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只.有.一个.1.如图,下列生活物品中,从整体上看,形状是圆柱的是2.5𝐺是第五代移动通信技术,5𝐺网络理论下载速度可以达到每秒1300000𝐾𝐵以上,这意味着下载一部高清电影只需1秒。将1300000用科学记数法表示应为(A)13×105(B)1.3×105(C)1.3×106(D)1.3×1073.有理数𝑎,𝑏在数轴上的对应点的位置如图所示,则正确的结论是(A)𝑎+𝑏0(B)𝑎−𝑏0(C)𝑎𝑏0(D)𝑎0𝑏4.如果某天北京的最低气温为𝑎℃,中午12点的气温比最低气温高了10℃,那么中午12点的气温为(A)(10−𝑎)℃(B)(𝑎−10)℃(C)(𝑎+10)℃(D)(𝑎+12)℃5.下列各组中的两项,属于同类项的是(A)−2𝑥3与−2𝑥2(B)−1𝑎𝑏与18𝑏𝑎(C)𝑎2𝑏与−𝑎𝑏2(D)4𝑚与6𝑚𝑛36.如果关于𝑥的方程𝑥+2𝑎−3=0的解集是𝑥=−1,那么𝑎的值是(A)−2(B)−1(C)1(D)27.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是8.如图,点𝐶为线段𝐴𝐵的中点,点𝐷在线段𝐶𝐵上,如果𝐶𝐷=3,𝐷𝐵=2,那么线段𝐴𝐷的长是(A)4(B)5(C)8(D)10(A)5(B)4(C)3(D)210.如图所示,直线𝐴𝐵、𝐶𝐷相交于点𝑂,“阿基米德曲线”从点𝑂开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,⋯.那么标记为“-2020”的点在(A)射线𝑂𝐴上(B)射线𝑂𝐵上(C)射线𝑂𝐶上(D)射线𝑂𝐷上二、填空题(本题共24分,每小题3分)11.−5的相反数是.12.右图是某几何体的展开图,该几何体是.13.180°−52°18′=.14.如图所示的网格是正方形网格,∠𝐵𝐴𝐶∠𝐷𝐴𝐸(填“”、“=”或“”)15.如图,经过刨平的木板上的𝐴、𝐵两个点,可以弹出一条笔直的墨线。能解释这一实际应用的数学知识是.16.下面的框图表示了琳琳同学解方程6+3𝑥=2𝑥−1的流程:↓第一步↓第二步↓第三步你认为琳琳同学在解这个方程的过程中从第步开始出现问题,正确完成这一步的依据是.6+3𝑥=2𝑥−13𝑥+2𝑥=6−15𝑥=5𝑥=117.|𝑎|的含义是:数轴上表示数𝑎的点与原点的距离,那么|3|的含义是;如果|𝑥|=3,那么𝑥的值是.18.请你依据下面的情境,补充相应的条件和问题,使解决该实际问题的方程为3𝑥+2(𝑥+20)=180为了倡导同学们开展有益的课外活动,某校七年级组织了“爱我中国”合唱节评比活动。老师为参加比赛的5个班级都准备了一份奖品..三、解答题(本题共46分,第19题3,分第20—27题,每小题4分,第28题5分,第29题6分)解答应写出文字说明、演算步骤或证明过程24.先简化,再求值:−𝑎2𝑏+(3𝑎𝑏2−2𝑎2𝑏)−(𝑎𝑏2−3𝑎2𝑏),其中𝑎=−1,𝑏=225.下面是小明某次作图的过程.已知:如图,线段𝑎,𝑏.做法:①画射线𝐴𝑃;②用圆规在射线𝐴𝑃上截取一点𝐵,使线段𝐴𝐵=𝑎;③用圆规在射线𝐴𝑃上截取一点C,使线段𝐵𝐶=𝑏.根据小明的作图过程,(1)补全所有符合小明作图过程的图形;(保留作图痕迹)(2)线段𝐴𝐶=.(用含𝑎,𝑏的式子表示)26.为了促进全民健身运动的开展,某市组织了一次足球比赛,下表记录了比赛过程中部分代表队的积分情况。代表队场次(场)胜(场)平(场)负(场)积分(分)A651016B660018C632111D631210(1)本次比赛中,胜一场积分;(2)参加此次比赛的𝐹代表队完成10场比赛后,只输了一场,积分是23分,请你求出𝐹代表队胜出的场数。27.如图,货轮𝑂在航行过程中,发现灯塔𝐴在它北偏东60°的方向上,同时,在它南偏西20°、西北(即北偏西45°)方向上又分别发现了客轮𝐵和海岛𝐶,仿照表示灯塔方位的方法,画出表示客轮𝐵和海岛𝐶方向的射线。28.如图,𝑂是直线𝐴𝐵上一点,∠𝐵𝑂𝐶=60°,作射线𝑂𝐷,𝑂𝐸,使得𝑂𝐷平分∠𝐴𝑂𝐶,𝑂𝐸平分∠𝐵𝑂𝐶.求∠𝐷𝑂𝐸的度数.(1)请依据题意补全图形;(2)完成下面的解答过程:解:因为𝑂是直线𝐴𝐵上一点,所以∠𝐴𝑂𝐶+∠𝐵𝑂𝐶=180°.由∠𝐵𝑂𝐶=60°,得∠𝐴𝑂𝐶=°.因为𝑂𝐷平分∠𝐴𝑂𝐶,所以∠𝐶𝑂𝐷=()×∠𝐴𝑂𝐶=°.因为𝑂E平分∠𝐵𝑂𝐶,所以∠𝐶𝑂𝐸=()×∠𝐵𝑂𝐶=°.所以∠DOE=∠COD+∠COE=°.29.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点𝑀,𝑁所表示的数分别为0,12。将一枚棋子放置在点𝑀处,让这枚棋子沿数轴在线段𝑀𝑁上往复运动(即棋子从点𝑀出发沿数轴向右运动,当运动到点𝑁处,随即沿数轴向左运动,当运动到点𝑀处,随即沿数轴向右运动,如此反复⋯)。并且规定棋子按照如下的步骤运动:第1步,从点𝑀开始运动𝑡个单位长度至点𝑄1处;第2步,从点𝑄1继续运动2𝑡单位长度至点𝑄2处;第3步,从点𝑄2继续运动3𝑡个单位长度至点𝑄3处⋯例如:当𝑡=3时,点𝑄1、𝑄2、𝑄3的位置如图2所示.解决如下问题:(1)如果𝑡=4,那么线段𝑄1𝑄3=;(2)如果𝑡4,且点𝑄3表示的数为3,那么t=;(3)如果𝑡≤2,且线段𝑄2𝑄4=2,那么请你求出𝑡的值.
本文标题:2020.1北京市丰台区初一年级第一学期期末-数学试题
链接地址:https://www.777doc.com/doc-4448692 .html