您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > CRT结构及工作原理
尽管显示器的新品层出不穷,但CRT(CathodeRayTube,阴极射线管)的基本工作原理一直沿用了几十年,直到今天也没有太大的变化。显示器是一种复杂的设备,其扩展性和可靠性也十分惊人,在这一方面,电子控制起了很大的作用,任何机械都会有磨损,唯有用电子元件才能延长寿命,甚至能适应数千小时的工作。电子枪是显像管的核心,它发出的电子束击中光敏材料(荧光屏),刺激荧光粉就能产生图像。实际上,电子枪和大体积、功率强劲的二极管没有什么区别,其原理也适用于电视机和示波器。1、生成图像CRT分为几个部分:DeflectionCoil(偏转线圈)用于电子枪发射器的定位,它能够产生一个强磁场,通过改变强度来移动电子枪。线圈偏转的角度有限,当电子束传播到一个平坦的表面时,能量会轻微地偏移目标,仅有部分荧光粉被击中,四边的图像都会产生弯曲现象。为了解决这个问题,显示器生产厂把显像管制造成球形,让荧光粉充分地接受到能量,缺点是屏幕将变得弯曲。电子束射击由左至右,由上至下的过程称为刷新,不断重复地刷新能保持图像的持续性。2、混合颜色旧式的显示器只有单一的电子枪,仅能产生黑白两种颜色,即是传说中的MonochromeMonitor(单色显示器)。新一代显示器有三只电子枪,每个电子枪都有独立的偏转线圈,分别发出RGB(Red、Blue、Green,红、蓝、绿)三束光线,混合光线可以产生1600万种颜色,或者说真彩色。某些显示器能用一个电子枪发出三束光线,经过混合亦能生成其它颜色。生成彩色图像电子枪要扫描屏幕三次,其过程比黑白图像复杂得多。3、回转变压器(FlybackTransformer)回转变压器类似发动机点火线圈,在特定时间发出一个低能量信号给回转磁线圈,并生成磁场。当低能量源关闭后,磁线圈的能量转移到高能量输出中,最后传到电子枪发出电子束。依照CRT尺寸的不同,产生的能量也各有差异,通常在10000伏至50000伏之间。当电子枪完成一条线的扫描后,回转变压器会放出能量,关闭电子枪并消去磁场,强制光束发到屏幕的其它位置,就能画出下一条线。在显示器开启时,不要直接触摸CRT,它带有上万伏的电压,你会被击伤并导致死亡。4、垂直和水平同步垂直和水平是CRT中两个基本的同步信号,水平同步信号决定了CRT画出一条横越屏幕线的时间,垂直同步信号决定了CRT从屏幕顶部画到底部,再返回原始位置的时间,垂直同步也可以称为刷新率。显卡把这两个参数提供给显示器,显示器用它们来驱动内部振荡电路,确定显示器与当前显卡的设置相同。标准电视机的水平同步信号=512线×30帧/秒=15.75kHz,显示器的水平同步信号可任意调节,幅度在15.75kHz-95Khz之间。把水平同步信号反转能够得出扫描一条线的时间,即1/17.75Khz=63.5微秒。在垂直折回脉冲使电子枪关闭后,电子枪会返回原来位置,电视机扫描一帧图像要返回525次。因为CRT的频繁开关和扫描切换,在屏幕上实际表现出来的线数比525要少一些,约为428-399条线。5、交错和非交错显示器表现的是静态画面,并以连续的画面来组成动画,由于电脑画面是随机的,无法预先录制,在玩3D游戏时就会感到画面的过渡出现停顿感。为了追求显示画面的速度,需要采用的二种不同扫描方式。电视机采用的是交错(Interlace)扫描,机器本身刷新速度不足,每一帧都要刷新两次,由于人眼的视觉暂停原理,会感到画面是连续播入的,缺点是人眼能发现两次刷新的不同,感到屏幕有闪烁,长时间观看容易使眼睛疲劳。显示器的隔行扫描与之相近,但有少许不同。电视机能稳定运行在30Hz,或30帧/秒,但早期CRT并不能保持刷新率不变,磁偏转线圈常常影响着电子束的发射,有时还会减弱电子束,以及荧光粉的发热时间的限制,导致上半部分屏幕比下半部分屏幕更亮,所以我们不能再沿用电视机的技术,必须有所突破。后来,人们采用了分线刷新的方法,第一次扫奇数行、第二次扫偶数行,缺点是每做一样工作要刷新两个周期,显示器的反应较慢,当然,画面闪烁是少不了的。不过,也因此而增加了显示器的刷新速度,以30fps的频率实现60fps图像亦变为可能,避免了显像管负荷过重而烧毁。幸运的是,在荧光粉发热时间和稳定性增加,以及电子枪得到重大改进的今天,上述发生早期CRT应用的问题亦不复再现。6、金属隔板技术点状阴罩(ShadowMasks)指电子枪和荧光屏之间放置一个金属隔板,上面有许多小洞让电子通过。其作用是防止一个荧光点加热时传导到附近的点,分离显示器的色彩。在阴罩技术方面,有两点最重要:一是如何使用更薄的金属来制造隔板,并缩小点与点之间的位置(DotPitch,点距),让它与屏幕上的点一一对应;二是如何修正电子束的颜色,让它更符合要求。阴罩的主要缺点是金属板会随着能量的变化而产生弯曲,特别是在高亮度的情况下,需要更多的能量来战胜阴罩的阻抗,弯曲会更加严重。金属板变形使电子束偏离原定目标,显示的画面会模糊不清。为此,人们只好不断寻找合适制造阴罩的金属,目前效果最好的是INVAR(不胀铜),它是镍/铁合金,膨胀率几乎为零。阴罩的第二个缺点是屏幕弯曲会产生刺眼的眩光,用AGC(AntiGlareCoatings,防眩光涂层)能解决这个问题。ApertureGrills(栅条式金属板)的原理和阴罩差不多,只是圆孔换成了垂直的栅条,增加了电子束的穿透率。由于栅条是垂直的,可以使用柱面显像管,在垂直方向实现完全平面。缺点是金属板过热会导致栅条间隔变小,显示图像模糊。除此之外,栅条的微小振动也会导致画面颤抖。Sony的Trinitron(特丽珑)采用了两条水平金属线来固定栅条的位置,虽然在高亮度时可以见到约隐约现的金属线,但并不影响画面的完整。slotmask(槽状阴罩)是NEC和Panasonic开发的新技术,它结合了传统阴罩和栅条金属板的优点,以重直长方形栅条代替了旧式的圆点,增加了电子束的穿透率。不过,它仍然无法避免金属板的变形,唯有沿用原有的球状显像管。另外,槽的形状还要尽量接近电子束的外形,防止荧光粉受到过多的能量照射。
本文标题:CRT结构及工作原理
链接地址:https://www.777doc.com/doc-4450648 .html