您好,欢迎访问三七文档
1《半导体物理》教案2第一章半导体中的电子状态§1.1晶体结构预备知识,半导体晶体结构本节内容:1.晶体结构的描述(有关的名词)格点:空间(一维或多维)点阵中的点(结点)晶列:通过任意;两格点所作的(晶列上有一系列格点)晶向:在坐标系中晶列的方向(确定晶向的方法待定)用晶向指数表示;如[110]。晶面:通过格点作的平面。一组平行的晶面是等效的,其中任意两晶面上的格点排列是相同的,且面间距相等。晶面用晶面指数(密勒指数)表示,如(111),(100)……反映晶体周期性的重复单元,有两种选取方法:在固体物理学中——选取周期最小的重复单元,即原胞。在晶体学中——由对称性取选最小的重复单元,即晶胞(单胞)基矢:确定原胞(晶胞)大小的矢量。原胞(晶胞)以基矢为周期排列,因此,基矢的大小又成为晶格常数。晶轴:以(布拉菲)原胞(或晶胞)的基矢为坐标轴——晶轴格矢:在固体物理学中,选某一格点为原点O,任一格点A的格矢AR=1l1a+2l2a+3l3a,1l、2l、3l为晶轴上的投影,取整数,1a、2a、3a为晶轴上的单位矢量。在结晶学中(用的较多),选某一格点为原点O,任一格点A的格矢AR=1la+2lb+3lc,1l、2l、3l为对应晶轴上的投影,取有理数,a、b、c为晶轴上的单位矢量。晶列指数及晶向:格矢在相应晶轴上投影的称作晶列指数,并用以表示晶向,即格矢所在的晶列方向。固体物理学中,表示为[1l2l3l],投影为负值时,l的数字上部冠负号。等效晶向用表示。晶面:通过格点作的平面,用晶面指数表示。晶面指数:表示晶面的一组数。晶向与晶面的关系:在正交坐标系中,晶面指数与晶面指数相同时,晶向垂直于晶面。2.几种晶格结构结晶学晶胞:1)简立方:立方体的八个顶角各有一个原子。2)体心立方:简立方的中心加进一个原子。3)面心立方:简立方的六个面的中心各有一个原子。4)金刚石结构:同种原子构成的两个面心立方沿体对角线相对位移体对角3线的41套构而成。每个晶胞含原子数:818(顶角)+216(面心)+4(体心)=8个如果只考虑晶格的周期性,可用固体物理学原胞表示:1、简立方原胞:与晶胞相同,含一个原子。2、体心立方原胞:为棱长23a的简立方,含一个原子。3、面心立方原胞:为棱长22a的菱立方,由面心立方体对角线的;两个原子和六个面心原子构成,含一个原子。4、金刚石结构原胞:为棱长22a的菱立方,由体对角线的两个原子和六个面心原子构成棱立方,其内包含一个距顶角41体对角线的原子,因此,原胞共含有2个原子。3.半导体硅、锗的晶体结构(金刚石型结构)4.闪锌矿型结构课程重点:半导体硅、锗的晶体结构(金刚石型结构)及其特点;半导体的闪锌矿型结构及其特点。课程难点:1、描述晶体的周期性可用原胞和晶胞,要把原胞和晶胞区分开。在固体物理学中,只强调晶格的周期性,其最小重复单元为原胞,例如金刚石型结构的原胞为棱长22a的菱立方,含有两个原子;在结晶学中除强调晶格的周期性外,还要强调原子分布的对称性,例如同为金刚石型结构,其晶胞为棱长为a的正立方体,含有8个原子。2、闪锌矿型结构的Ⅲ-Ⅴ族化合物和金刚石型结构一样,都是由两个面心立方晶格套构而成,称这种晶格为双原子复式格子。如果选取只反映晶格周期性的原胞时,则每个原胞中只包含两个原子,一个是Ⅲ族原子,另一个是Ⅴ族原子。基本概念:原胞和晶胞都是用来描述晶体中晶格周期性的最小重复单元,但二者有所不同。在固体物理学中,原胞只强调晶格的周期性;而在结晶学中,晶胞还要强调晶格中原子分布的的对称性。基本要求:记住晶向与晶面的关系;熟悉金刚石型结构与闪锌矿型结构晶胞原子的空间立体分布及硅、锗、砷化镓晶体结构特点,晶格常数,原子密度数量级(2210个原子/立方厘米)。4§1.2半导体中的电子状态本节内容:1、原子中的电子状态1、1玻耳的氢原子理论1、2玻耳氢原子理论的意义1、3氢原子能级公式及玻耳氢原子轨道半径1、4索末菲对玻耳理论的发展1、5量子力学对半经典理论的修正1、6原子能级的简并度2、晶体中的电子状态2、1电子共有化运动2、2电子共有化运动使能级分裂为能带3、半导体硅、锗晶体的能带3、1硅、锗原子的电子结构3、2硅、锗晶体能带的形成3、3半导体(硅、锗)的能带特点课程重点:1、氢原子能级公式nE=-222048hnmq,氢原子第一玻耳轨道半径1r=220qmh,这两个公式还可用于类氢原子(今后用到)2、量子力学认为微观粒子(如电子)的运动须用波函数来描述,经典意义上的轨道实质上是电子出现几率最大的地方。电子的状态可用四个量子数表示。3、晶体形成能带的原因是由于电子共有化运动4、半导体(硅、锗)能带的特点:①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。③导带与价带间的能隙(Energygap)称为禁带(forbiddenband).禁带宽度取决于晶体种类、晶体结构及温度。④当原子数很大时,导带、价带内能级密度很大,可以认为能级准连续课程难点:原子能级的简并度为(2l+1),若记入自旋,简并度为2(2l+1);注意一点,原子是不能简并的。基本概念:电子共有化运动:原子组成晶体后,由于原子壳层的交叠,电子不再局限在某一个原子上,可以由一个原子转移到另一个原子上去,因而,电子将可以在整个晶体中运动,这种运动称为电子的共有化运动。但须注意,因为各原子中相似壳层上的电子才有相同的能量,电子只能在相似壳层中转移。基本要求:掌握氢原子能级公式和氢原子轨道半径公式;掌握能带形成的原因及电子共有化运动的特点;掌握硅、锗能带的特点。§1.3电子在周期场中的运动——能带论本节内容:51、自由电子的运动2、电子在周期场中的运动3、能带理论的应用课程重点:1、熟悉晶体中电子的运动与孤立原子的电子和自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动,单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。2、自由电子的运动状态:对于波矢为k的运动状态,自由电子的能量E,动量p,速度v均有确定的数值。因此,波矢k可用以描述自由电子的运动状态,不同的k值标志自由电子的不同状态,自由电子的E和k的关系曲线,呈抛物线形状。由于波矢k的连续变化,自由电子的能量是连续能谱,从零到无限大的所有能量值都是允许的。3、晶体中的电子运动服从布洛赫定理:晶体中的电子是以调幅平面波在晶体中传播。这个波函数称为布洛赫波函数。4、求解薛定谔方程,得到电子在周期场中运动时其能量不连续,形成一系列允带和禁带。一个允带对应的K值范围称为布里渊区。5、用能带理论解释导带、半导体、绝缘体的导电性。课程难点:1、布洛赫波函数的意义:晶体中的电子在周期性势场中运动的波函数与自由电子的波函数形式相似,代表一个波长为1/k而在k方向上传播的平面波,不过这个波的振幅k(x)随x作周期性的变化,其变化周期与晶格周期相同。所以常说晶体中的电子是以一个被调幅的平面波在晶体中传播。显然,若令k(x)为常数,则在周期性势场中运动的电子的波函数就完全变为自由电子的波函数了。其次,根据波函数的意义,在空间某一点找到电子的几率与波函数在该点的强度(即||2=*)成比例。对于自由电子,|*|=A2,即在空间各点波函数的强度相等,故在空间各点找到电子的几率相同,这反映了电子在空间中的自由运动,而对于晶体中的电子,|*|=|k(x)*k(x)|,但k(x)是与晶格同周期的函数,在晶体中波函数的强度也随晶格周期性变化,所以在晶体中各点找到该电子的几率也具周期性变化的性质。这反映了电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其它晶胞内的对应点,因而电子可以在整个晶体中运动,这种运动成为电子在晶体内的共有化运动。组成晶体的原子的外层电子共有化运动较强,其行为与自由电子相似,常称为准自由电子。而内层电子的共有化运动较弱,其行为与孤立原子中的电子相似。最后,布洛赫波函数中的波矢k与自由电子波函数的一样,它描述晶体中电子的共有化运动状态,不同的k的标志着不同的共有化运动状态。2、金刚石结构的第一布里渊区是一个十四面体,(见讲义图1-11),要注意图中特殊点的位置。6基本概念及名词术语:1、能带产生的原因:定性理论(物理概念):晶体中原子之间的相互作用,使能级分裂形成能带。定量理论(量子力学计算):电子在周期场中运动,其能量不连续形成能带。能带(energyband)包括允带和禁带。允带(allowedband):允许电子能量存在的能量范围。禁带(forbiddenband):不允许电子存在的能量范围。允带又分为空带、满带、导带、价带。空带(emptyband):不被电子占据的允带。满带(filledband):允带中的能量状态(能级)均被电子占据。导带(conductionband):电子未占满的允带(有部分电子。)价带(valenceband):被价电子占据的允带(低温下通常被价电子占满)。2、用能带理论解释导体、半导体、绝缘体的导电性:固体按其导电性分为导体、半导体、绝缘体,其机理可以根据电子填充能带的情况来说明。固体能够导电,是固体中的电子在外场的作用下定向运动的结果。由于电场力对电子的加速作用,使电子的运动速度和能量都发生了变化。换言之,即电子与外电场间发生能量交换。从能带论来看,电子的能量变化,就是电子从一个能级跃迁到另一个能级上去。对于满带,其中的能级已被电子所占满,在外电场作用下,满带中的电子并不形成电流,对导电没有贡献,通常原子中的内层电子都是占据满带中的能级,因而内层电子对导电没有贡献。对于被电子部分占满的能带,在外电场作用下,电子可从外电场中吸收能量跃迁到未被电子占据的的能级去,起导电作用,常称这种能带为导带。金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。半导体和绝缘体的能带类似,即下面是已被价电子占满的满带(其下面还有为内层电子占满的若干满带),亦称价带,中间为禁带,上面是空带。因此,在外电场作用下并不导电,但是这只是绝对温度为零时的情况。当外界条件发生变化时,例如温度升高或有光照时,满带中有少量电子可能被激发到上面的看到中去,使能带底部附近有了少量电子,因而在外电场作用下,这些电子将参与导电;同时,满带中由于少了一些电子,在满带顶部附近出现了一些空的量子状态,满带变成了部分占满的能带,在外电场作用下,仍留在满带中的电子也能够起导电作用,满带电子的这种导电作用等效于把这些空的量子状态看作带正电荷的准粒子的导电作用,常称这些空的量子状态为空穴。所以在半导体中导带的电子和价带的空穴参与导电,这是与金属导体的最大差别。绝缘体的禁带宽度很大,激发电子需要很大的能量,在通常温度下,能激发到导带中的电子很少,所以导电性很差。半导体禁带宽度比较小,数量级在1eV左右,在通常温度下已有不少电子被激发到导带中去,所以具有一定的导电能力,这是绝缘体和半导体的主要区别。室温下,金刚石的禁带宽度为6~7eV,它是绝缘体;硅为1.12eV,锗为0.67eV,砷化镓为1.43eV,所以它们都是半导体。3、共价键理论共价键理论能够比较简单、直观、较好地解释晶体的某些性质。⑴共价键理论主要有三点:①晶体的化学键是共价键,如Si,Ge。②共价键上的电子处于束缚态,不能参与导电。7③处于束缚态的价电子从外界得到能量,有可能挣脱束缚成为自由电子,参与导电。⑵共价键理论应用①解释半导体掺杂的敏感性例:掺入替位式五价元素,可提供导电电子;掺入替位式三价元素,可提供导电空穴。②解释半导体的热敏性,光敏性等。⑶两者理论的比较(能带理论与共价键理论的对应关系)能带理论共价键理论价带中电子
本文标题:《半导体物理》教案
链接地址:https://www.777doc.com/doc-4450976 .html