您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 微积分-各种求极限的方法
北京理工大学微积分-求极限单调有界准则夹逼准则无穷小代换罗密达法则泰勒定理程功2010/12/2911.lim1.1nnn证明证:1nx11nn11n任给0,要使1nx,只要1,1n即11n,所以,取1[]1N,则当nN时,就有11nn,即lim1.1nnn2.证明:nn2lim0n!证:当n2时,2222222411!1231nnnnn(放大一般项)对n240,|0|,n!n要使只要,即4n,故只需取4Nmax{[],2},则当nN时,有n42n,n!nn2lim0n!.0a3证明当时,limaxx.解:设n为不超过x的最大整数nxn,则1aaanxn且1lim0lim0nnxxaalim0xxa4.1,当时x242lim(1)(1)(1)(1).求nnxxxx解:将分子、2同时乘以因子1x,则此题可解。5.设,0,lim.求nnnnnnxababx解:2nnnnnnnbabb,lim2lim2nnnnnbbb根据夹逼定理有limlimnnnnnnxabb6.121limln2(12)nnnnana设,求解:211limlnlimln1(12)(12)nnnnnannana无穷小代换lim(12)nnna112a27.3101tanlim().1sinxxxx求解:3101tanlim[1(1)]1sinxxxx原式310tansinlim[1]1sinxxxxx30tansin1lim1sinxxxxx30sin(1cos)1lim(1sin)cosxxxxxx20sin1cos1lim(1sin)cosxxxxxxx1212.e原式8.求lim()3nnnnnabc解(一):33333lim(1)3原式nnnnnnabcnnnnabcnabc333lim(1)3nnnnnnabcnabce3lim3nnnnabcn1111lim()1113nnnnaaannn1(lnlnln)3abc3ln,abc所以原式=3lnabce3abc解(二):ln3lim原式nnnabcnne而limln3nnnnabcn3limln(1)3nnnnabcn3lim3nnnnabcn1111lim()1113nnnnabcnnn1(lnlnln)3abc3lnabc3ln原式abce3abc9.设),,2,1(,3,311nxxxnn证明数列}{nx极限存在,并求.limnnx证明:单调性:12333xx,假设,1nnxx有nnnnxxxx1133,由数学归纳法知:单增。}{nx3有界性:,1331x131323332x,假设13nx,则13132313331nnxx有归纳法可知数列}{nx有界,由单调有界准则知:nnxlim存在。设axnnlim,在等式nnxx31两边取极限,得2131a.2131limnnx10.求数列极限nlim256nnx11.求数列极限lim(cos).nnn原式=nnnnn)1(cos1cos1)1cos1(lim2)(21lim)1(cos22limeeennnnnn(注:也可以先转化为函数的极限再用洛必达法则)12.10119,lim.1321nnnnxxn设求解:110119191011991132121132121nnnnnnxxnnnn易见当9n时,有1nnxx,即n时,数列nx单调递减;又显然nx,由单调有界准则知limnnx存在.40lim0nnAx得设lim,nnxA由已知可得11021nnnxxn,两边取极限,有2AA,即0.lim0nnAx13.求极限10limsincos2.2xxxx解:原式001sincos212sincos2120sincos21112limcos2sin2lim222lim1sincos212xxxxxxxxxxxxxxxeee或原式001cos2sin222lnsincos2lim12limsincos222xxxxxxxxxeee14.设01210,(0,1,2,)2nnnxxxnx(),求证:nx收敛,并求nnlimx.解:有界性01120,1122,(0,1,2,)1(1,2,)21nnnnnnxxxxnxnxx,单调性:111112112222nnnnnnnnnnxxxxxxxxxx111,2,nnnnxxxxn与同号10n10nxxxxxx当时,单调递增;当时,单调递减。由单调有界准则知,nx收敛.设nnlimxA,两边取极限,有222AAA2Annlim2x15.数列极限)24(tanlimnnne的4次方.516.设()ln(1)fxx,由拉格朗日中值定理,得:)1,0(,1x,使得xxxxfxx1)()01ln()1ln()1ln(.求极限0limx的值.解:由已知得:,)1ln()1ln(xxxx2000)1ln(lim)1ln()1ln(limlimxxxxxxx.21)1(2lim2111lim00xxxxx17.lim1.1nnn证明证:1nx11nn11n任给0,要使1nx,只要1,1n即11n,所以,取1[]1N,则当nN时,就有11nn,即lim1.1nnn18.求数列极限).11tan(lim2nnnn1222300tan(1)11tanlim(tan1lim(tan1)limlimtxnxttttttnnxxnxtt令解:.316tansec2lim31seclim20220ttttttt19.求lim(0,0).()nxxxne型解:122(1)!limlimlimlim0nnnxxxnxxxxxxnxnnxneeee620.求lim(0,0).axxxae解:这里只讨论a不为正整数的情形。存在非负整数k使当1x时,1kakxxx,从而1knkxxxxxxeee(用夹逼准则)由(1)1limlim0kkxxxxxxeelim0nxxxe21.设()gx具有二阶连续导数,且(0)1,g()cos0(),0gxxxfxxax(1)确定a的值,使()fx在点0x处连续。(2)求().fx(3)讨论()fx在点0x处的连续性。解:(1)由于000()cos()sinlim()limlim(0).1xxxgxxgxxfxgx故当(0)ag时,()fx在点0x处连续。()cos0()(0)1.(0)0gxxxfxgxgx且(2)当0x时,2(()sin)(()cos)()gxxxgxxfxx当0x时,2000()cos(0)()(0)()cos(0)(0)limlimlimxxxgxxgfxfgxxxgxfxxx00()sin(0)()cos(0)1limlim222xxgxxggxxgx2(()sin)(()cos),0()(0)1,02gxxxgxxxxfxgx(3)由于2000[()sin][()cos][()cos]lim()limlim2xxxgxxxgxxgxxxfxxx0()cos(0)1lim(0)22xgxxgf所以()fx在点0x处连续。22.求limnnn7解:由于1lnlnlim0limlimlim1.xxxxxxxxxxxxeee所以lim1.nnn23.求lim(1).nnnn(0型)解:法(一)用洛必达法则分析:为用洛必达法则,必须改求112lim(1).xxxx但对本题用此计算法很繁。法(二)原式1112111222ln1ln1lnlim(1)limlimlim0nnnnnnnnnennnnnn1ln1nnnne1ueu24.求32lim221xxxxx解:令1tx,则原式112220012211(12)(1)limlim2tttttttt3322120(12)(1)1lim24ttt25.2110001limxxex解:令,12xt则原式5049505050!limlimlimlim0ttttttttttteeee(应用洛必达法则)26.计算2402cos3limxxexx解:224411()2!xexxox244cos1()2!4!xxxox244112cos3(2)()2!4!xexxox原式44407()712lim.12xxoxx26.求2034434lim.xxxx解:用泰勒公式将分子展到2x项,由于12222234131113319342(1)2112242!2244416xxxxxxxx1222339144416432(1)2()xxxxox229121693220()limxxoxx原式827.求极限30sin(1)limxxexxxx解:2331()2!3!xxxexox33sin()3!xxxox2333333001()()(1)2!3!3!sin(1)limlimxxxxxxxoxxoxxxexxxxx33330()12!3!lim.3xxxoxx28求极限250lim.15(1)xxxx解:2x分子关于的次数为。1222255111115(15)1(5)(1)(5)()12()52!55xxxxoxxxox22201lim2[12()](1)xxxxoxx原式29.3200sin6()6()lim0,limxxxxfxfxxx若求解:331sin66(6)()6xxxox由3333200016(6)()()sin6()6()6
本文标题:微积分-各种求极限的方法
链接地址:https://www.777doc.com/doc-4456561 .html