您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 高考专项训练4:解三角形大题专项训练
一.选择题(共2小题)1.(2009•福建)已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75°B.60°C.45°D.30°2.(2004•贵州)△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于()A.B.C.D.二.填空题(共2小题)3.(2011•福建)如图,△ABC中,AB=AC=2,BC=,点D在BC边上,∠ADC=45°,则AD的长度等于_________.4.(2011•福建)若△ABC的面积为,BC=2,C=60°,则边AB的长度等于_________.三.解答题(共26小题)5.(2011•重庆)设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.6.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac=b2.(Ⅰ)当p=,b=1时,求a,c的值;(Ⅱ)若角B为锐角,求p的取值范围.7.(2011•天津)在△ABC中,内角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求cosA的值;(Ⅱ)的值.8.(2011•陕西)叙述并证明余弦定理.9.(2011•山东)在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△ABC的周长为5,求b的长.10.(2011•辽宁)△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若C2=b2+a2,求B.11.(2011•江西)在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC(1)求cosA的值(2)若a=1,,求边c的值.12.(2011•江苏)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.13.(2011•湖北)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=(I)求△ABC的周长;(II)求cos(A﹣C)的值.14.(2011•北京)已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.15.(2010•浙江)在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=.(I)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.16.(2010•重庆)设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2﹣3a2=4bc.(Ⅰ)求sinA的值;(Ⅱ)求的值.17.(2010•陕西)在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.18.(2010•辽宁)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.19.(2010•湖南)已知函数f(x)=sin2x﹣2sin2x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)求函数f(x)的零点的集合.20.(2009•重庆)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g(x)的最大值.21.(2009•江西)在△ABC中,A,B,C所对的边分别为a,b,c,,,(1)求C;(2)若,求a,b,c.22.(2009•湖北)在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且.(1)确定角C的大小;(2)若,且△ABC的面积为,求a+b的值.23.(2009•北京)已知函数f(x)=2sin(π﹣x)cosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.24.(2009•北京)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.25.(2008•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值;(Ⅱ)cotB+cotC的值.26.(2008•重庆)设△ABC的内角A,B,C的对边分别为a,b,c.已知,求:(Ⅰ)A的大小;(Ⅱ)2sinBcosC﹣sin(B﹣C)的值.27.(2008•天津)已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.28.(2008•四川)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知a2+c2=2b2.(Ⅰ)若,且A为钝角,求内角A与C的大小;(Ⅱ)求sinB的最大值.29.(2008•陕西)已知函数f(x)=2sin•cos+cos.(1)求函数f(x)的最小正周期及最值;(2)令g(x)=f,判断函数g(x)的奇偶性,并说明理由.30.(2008•辽宁)在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知.(1)若△ABC的面积等于,求a,b;(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.答案与评分标准一.选择题(共2小题)1.(2009•福建)已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75°B.60°C.45°D.30°考点:解三角形。专题:计算题。分析:先利用三角形面积公式表示出三角形面积,根据面积为3和两边求得sinC的值,进而求得C.解答:解:S=BC•AC•sinC=×4×3×sinC=3∴sinC=∵三角形为锐角三角形∴C=60°故选B点评:本题主要考查了解三角形的实际应用.利用三角形的两边和夹角求三角形面积的问题,是三角形问题中常用的思路.2.(2004•贵州)△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,∠B=30°,△ABC的面积为,那么b等于()A.B.C.D.考点:解三角形。专题:计算题。分析:先根据等差中项的性质可求得2b=a+c,两边平方求得a,b和c的关系式,利用三角形面积公式求得ac的值,进而把a,b和c的关系式代入余弦定理求得b的值.解答:解:∵a,b、c成等差数列,∴2b=a+c,得a2+c2=4b2﹣2ac、又∵△ABC的面积为,∠B=30°,故由,得ac=6.∴a2+c2=4b2﹣12.由余弦定理,得,解得.又b为边长,∴.故选B点评:本题主要考查了余弦定理的运用.考查了学生分析问题和基本的运算能力.二.填空题(共2小题)3.(2011•福建)如图,△ABC中,AB=AC=2,BC=,点D在BC边上,∠ADC=45°,则AD的长度等于.考点:解三角形。专题:计算题。分析:由A向BC作垂线,垂足为E,根据三角形为等腰三角形求得BE,进而再Rt△ABE中,利用BE和AB的长求得B,则AE可求得,然后在Rt△ADE中利用AE和∠ADC求得AD.解答:解:由A向BC作垂线,垂足为E,∵AB=AC∴BE=BC=∵AB=2∴cosB==∴B=30°∴AE=BE•tan30°=1∵∠ADC=45°∴AD==故答案为:点评:本题主要考查了解三角形问题.考查了学生分析问题和解决问题的能力.4.(2011•福建)若△ABC的面积为,BC=2,C=60°,则边AB的长度等于2.考点:解三角形。专题:计算题。分析:根据三角形的面积公式表示出三角形ABC的面积,让其等于列出关于AC的方程,求出方程的解即可得到AC的值,然后根据有一个角为60°的等腰三角形为等边三角形,得到△ABC,即可得到三角形的三边相等,即可得到边AB的长度.解答:解:根据三角形的面积公式得:S=BC•ACsinC=×2ACsin60°=AC=,解得AC=2,又BC=2,且C=60°,所以△ABC为等边三角形,则边AB的长度等于2.故答案为:2点评:此题考查学生灵活运用三角形的面积公式化简求值,掌握等边三角形的判别方法,是一道基础题.三.解答题(共26小题)5.(2011•重庆)设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.考点:三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换;三角函数的最值。专题:计算题;综合题。分析:(I)先利用诱导公式,二倍角公式与和角公式将函数解析式化简整理,然后利用周期公式可求得函数的最小正周期.(II)由(I)得函数y=f(x),利用函数图象的变换可得函数y=g(x)的解析式,通过探讨角的范围,即可的函数g(x)的最大值.解答:解:(I)∵f(x)=sinxcosx﹣cos(x+π)cosx=sinxcosx+cosxcosx=sin2x+cos2x+=sin(2x+)+∴f(x)的最小正周期T==π(II)∵函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,∴g(x)=sin(2x+﹣)++=sin(2x﹣)+∵0<x≤∴<2x﹣≤,∴y=g(x)在(0,]上的最大值为:.点评:本题考查了三角函数的周期及其求法,函数图象的变换及三角函数的最值,各公式的熟练应用是解决问题的根本,体现了整体意识,是个中档题.6.(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac=b2.(Ⅰ)当p=,b=1时,求a,c的值;(Ⅱ)若角B为锐角,求p的取值范围.考点:解三角形。专题:计算题。分析:(Ⅰ)利用正弦定理把题设等式中的角的正弦转化成边,解方程组求得a和c的值.(Ⅱ)先利用余弦定理求得a,b和c的关系,把题设等式代入表示出p2,进而利用cosB的范围确定p2的范围,进而确定pd范围.解答:(Ⅰ)解:由题设并利用正弦定理得故可知a,c为方程x2﹣x+=0的两根,进而求得a=1,c=或a=,c=1(Ⅱ)解:由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2accosB=p2b2﹣b2cosB﹣,即p2=+cosB,因为0<cosB<1,所以p2∈(,2),由题设知p>0,所以<p<点评:本题主要考查了解三角形问题.学生能对正弦定理和余弦定理的公式及变形公式熟练应用.7.(2011•天津)在△ABC中,内角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求cosA的值;(Ⅱ)的值.考点:余弦定理;同角三角函数基本关系的运用;两角和与差的余弦函数;二倍角的余弦。专题:计算题。分析:(I)利用三角形中的等边对等角得到三角形三边的关系;利用三角形的余弦定理求出角A的余弦.(II)利用三角函数的平方关系求出角A的正弦,利用二倍角公式求出角2A的正弦,余弦;利用两个角的和的余弦公式求出的值.解答:解:(I)由B=C,可得所以cosA==(II)因为所以=点评:本题考查三角形的余弦定理、考查三角函数的平方关系、考查两角和的余弦公式.8.(2011•陕西)叙述并证明余弦定理.考点:余弦定理。专题:证明题。分析:先利用数学语言准确叙述出余弦定理的内容,并画出图形,写出已知与求证,然后开始证明.方法一:采用向量法证明,由a的平方等于的平方,利用向量的三角形法则,由﹣表示出,然后利用平面向量的数量积的运算法则化简后,即可得到a2=b2+c2﹣2bccosA,同理可证b2=c2+a2﹣2cacosB,c2=a2+b2﹣2abcosC;方法二:采用坐标法证明,方法是以A为原点,AB所在的直线为x轴建立平面直角坐标系,表示出点C和点B的坐标,利用两点间的距离公式表示出|BC|的平方,化简后即可得到a2=b2+c2﹣2bccosA,同理可证b2=c2+a2﹣2cacosB,c2
本文标题:高考专项训练4:解三角形大题专项训练
链接地址:https://www.777doc.com/doc-4466564 .html