您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 福建省宁德市部分一级达标中学2016-2017学年高二数学下学期期中试卷-理(含解析)
2016-2017学年福建省宁德市部分一级达标中学高二(下)期中数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.关于复数,给出下列判断:①3>3i;②16>(4i)2;③2+i>1+i;④|2+3i|>|2+i|.其中正确的个数为()A.1B.2C.3D.42.在用反证法证明“在△ABC中,若∠C是直角,则∠A和∠B都是锐角”的过程中,应该假设()A.∠A和∠B都不是锐角B.∠A和∠B不都是锐角C.∠A和∠B都是钝角D.∠A和∠B都是直角3.函数f(x)=ex﹣4x的递减区间为()A.(0,ln4)B.(0,4)C.(﹣∞,ln4)D.(ln4,+∞)4.若直线y=4x是曲线f(x)=x4+a的一条切线,则a的值为()A.1B.2C.3D.45.cosxdx=dx(a>1),则a的值为()A.B.2C.eD.36.已知函数f′(x)的图象如图所示,其中f′(x)是f(x)的导函数,则f(x)的极值点的个数为()A.2B.3C.4D.57.下列四个类比中,正确得个数为()(1)若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数.(2)若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2.将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为.(3)若一个等差数列的前3项和为1,则该数列的第2项为.将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1.(4)在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8.A.1B.2C.3D.48.有下列一列数:,1,1,1,(),,,,,…,按照规律,括号中的数应为()A.B.C.D.9.一拱桥的形状为抛物线,该抛物线拱的高为h,宽为b,此抛物线拱的面积为S,若b=3h,则S等于()A.h2B.h2C.h2D.2h210.已知复数z=x+(x﹣a)i,若对任意实数x∈(1,2),恒有|z|>|+i|,则实数a的取值范围为()A.(﹣∞,]B.(﹣∞,)C.[,+∞)D.(,+∞)11.设数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),则S10等于()A.90B.100C.110D.12012.若函数f(x)满足:x3f′(x)+3x2f(x)=ex,f(1)=e,其中f′(x)为f(x)的导函数,则()A.f(1)<f(3)<f(5)B.f(1)<f(5)<f(3)C.f(3)<f(1)<f(5)D.f(3)<f(5)<f(1)二、填空题(共4小题,每小题5分,满分20分)13.复数在复平面内对应的点位于第象限.14.将原油精炼为汽油、柴油、塑胶等各种不同的产品,需要对原油进行冷却和加热,若在第xh时,原油的温度(单位:℃)为f(x)=x2﹣7x+15(0≤x≤8),则在第1h时,原油温度的瞬时变化率为℃/h.15.已知表示不大于x的最大整数,设函数f(x)=,得到下列结论:结论1:当1<x<2时,f(x)=0;结论2:当2<x<4时,f(x)=1;结论3:当4<x<8时,f(x)=2;照此规律,得到结论10:.16.若函数f(x)=x3﹣3x+5﹣a(a∈R)在上有2个零点,则a的取值范围是.三、解答题(共6小题,满分70分)17.已知复数z满足,|z|=5.(1)求复数z的虚部;(2)求复数的实部.18.已知函数f(x)=e2x﹣1﹣2x.(1)求f(x)的极值;(2)求函数g(x)=在上的最大值和最小值.19.用数学归纳方法证明:22+42+62+…+(2n)2=n(n+1)(2n+1)(n∈N*).20.已知函数f(x)=x3+x.(1)求函数g(x)=f(x)﹣4x的单调区间;(2)求曲线y=f(x)在点(1,f(1))处的切线l与坐标轴围成的三角形的面积;(3)若函数F(x)=f(x)﹣ax2在(0,3]上递增,求a的取值范围.21.现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB分别交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的养殖区域.已知OA=1km,∠AOB=,∠EOF=θ(0<θ<).(1)若区域Ⅱ的总面积为,求θ的值;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当θ为多少时,年总收入最大?22.已知函数f()=﹣x3+x2﹣m(0<m<20).(1)讨论函数f(x)在区间上的单调性;(2)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x2,f(x2))处的切线都经过点(2,lg),其中a≥1,求m的取值范围.2016-2017学年福建省宁德市部分一级达标中学高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.关于复数,给出下列判断:①3>3i;②16>(4i)2;③2+i>1+i;④|2+3i|>|2+i|.其中正确的个数为()A.1B.2C.3D.4【考点】A2:复数的基本概念.【分析】①③两个复数如果不完全是实数,则不能比较大小;②利用复数的运算法则即可判断出结论;④利用复数的模的计算公式即可判断出结论.【解答】解:①两个复数如果不完全是实数,则不能比较大小,因此3>3i不正确;②∵(4i)2=﹣16,因此正确;③道理同①,不正确;④|2+3i|==,|2+i|=,因此|2+3i|>|2+i|正确.其中正确的个数为2.故选:B.2.在用反证法证明“在△ABC中,若∠C是直角,则∠A和∠B都是锐角”的过程中,应该假设()A.∠A和∠B都不是锐角B.∠A和∠B不都是锐角C.∠A和∠B都是钝角D.∠A和∠B都是直角【考点】R9:反证法与放缩法.【分析】根据用反证法证明数学命题的步骤,应先假设命题的反面成立,求出要证明题的否定,即为所求.【解答】解:用反证法证明数学命题时,应先假设命题的反面成立,而命题:“∠A和∠B都是锐角”的否定是∠A和∠B不都是锐角,故选:B.3.函数f(x)=ex﹣4x的递减区间为()A.(0,ln4)B.(0,4)C.(﹣∞,ln4)D.(ln4,+∞)【考点】6B:利用导数研究函数的单调性.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.【解答】解:f′(x)=ex﹣4,令f′(x)<0,解得:x<ln4,故函数在(﹣∞,ln4)递减;故选:C.4.若直线y=4x是曲线f(x)=x4+a的一条切线,则a的值为()A.1B.2C.3D.4【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,利用切线的斜率,设出切点坐标,列出方程求解即可.【解答】解:设切点坐标为:(m,4m),∵f′(x)=4x3,∴f′(m)=4m3=4,解得m=1,∴14+a=4,解得a=3.故选:C.5.cosxdx=dx(a>1),则a的值为()A.B.2C.eD.3【考点】67:定积分.【分析】根据定积分的计算法则计算即可.【解答】解:cosxdx=sinx|=,dx=lnx|=lna,∴lna=,∴a=故选:A6.已知函数f′(x)的图象如图所示,其中f′(x)是f(x)的导函数,则f(x)的极值点的个数为()A.2B.3C.4D.5【考点】3O:函数的图象.【分析】根据极值点的定义和f′(x)的图象得出结论.【解答】解:若x0是f(x)的极值点,则f′(x0)=0,且f′(x)在x0两侧异号,由f′(x)的图象可知f′(x)=0共有4解,其中只有两个零点的左右两侧导数值异号,故f(x)有2个极值点.故选A.7.下列四个类比中,正确得个数为()(1)若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数.(2)若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2.将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为.(3)若一个等差数列的前3项和为1,则该数列的第2项为.将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1.(4)在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8.A.1B.2C.3D.4【考点】2K:命题的真假判断与应用.【分析】根据类比推理的一般步骤是:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想),判断命题是否正确.【解答】解:对于(1),若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数,命题正确;对于(2),若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2;将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为,命题正确;对于(3),若一个等差数列的前3项和为1,则该数列的第2项为;将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1,命题正确;对于(4),在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8,命题正确.综上,正确的命题有4个.故选:D.8.有下列一列数:,1,1,1,(),,,,,…,按照规律,括号中的数应为()A.B.C.D.【考点】82:数列的函数特性.【分析】由题意可得:分子为连续的奇数,分母为连续的质数,即可得出.【解答】解:,,,,(),,,,,…,由题意可得:分子为连续的奇数,分母为连续的质数,故括号中的数应该为,故选:B9.一拱桥的形状为抛物线,该抛物线拱的高为h,宽为b,此抛物线拱的面积为S,若b=3h,则S等于()A.h2B.h2C.h2D.2h2【考点】K8:抛物线的简单性质;69:定积分的简单应用.【分析】建立平面直角坐标系,设抛物线方程,将点代入抛物线方程,即可求得抛物线方程,根据定积分的几何意义,即可求得S.【解答】解:以抛物线的最高点为坐标原点,以抛物线的拱的对称轴为y轴,建立平面直角坐标系,设抛物线方程y=ax2,a<0,由抛物线经过点(,﹣h),代入抛物线方程:﹣h=a()2,解得:a=﹣,S=h×3h﹣(﹣2ax2dx),=3h2﹣2××x3=2h2,故选D.10.已知复数z=x+(x﹣a)i,若对任意实数x∈(1,2),恒有|z|>|+i|,则实数a的取值范围为()A.(﹣∞,]B.(﹣∞,)C.[,+∞)D.(,+∞)【考点】A4:复数的代数表示法及其几何意义.【分析】求出复数的模,把|z|>|+i|,转化为a<x(1<x<2)恒成立,再求出x﹣的范围得答案.【解答】解:∵z=x+(x﹣a)i,且|z|>|+i|恒成立,∴>,两边平方并整理得:a<x﹣.∵x∈(1,2),∴x﹣∈(,).则a.∴实数a的取值范围为(﹣∞,].故选:A.11.设数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),则S10等于()A.90B.100C.110D.120【考点】8E:数列的求和.【分析】由题意可得4S3=3(a3+7),4S2=2(a2+a3),4S1=a1+a2,运用数列的递推式可得a1=1,a2=3,a3=5,进而得到an=2n﹣1,,即可得到所求值.【解答】解:由数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),可得4S3=3(a3+7),4S2=2(a2+a3),4S1=a1+a2,∴a2=3a1,a3=5a1,从而4×9a1=3(5a1+7),即a1=1,∴a2=3,a3=5,∴4S4=4(a4+a5)
本文标题:福建省宁德市部分一级达标中学2016-2017学年高二数学下学期期中试卷-理(含解析)
链接地址:https://www.777doc.com/doc-4470702 .html