您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 化合物半导体20132014复习题
1.半导体固溶体是由两种或两种以上同一类型的半导体材料组成的合金,且一般都是组分连续固溶体。半导体固溶体的组成元素的含量可在固溶度范围内连续变化,其半导体及相关性质也随之变化。2.等电子杂质等电子杂质是一种重要的深能级杂质,在半导体光电子器件中往往起着关键作用。例如,在GaP和GaAsP中,V族杂质N可取代P而成为束缚一个电子的陷阱,V族杂质Bi也可取代P而成为束缚一个空穴的陷阱.这种陷阱都称为等电子陷阱,相应的杂质都称为等电子杂质(因为杂质原子与它所取代的母体原子都具有相同的价电子数)。但并不是任何等电子杂质都可以成为陷阱。而只有那些原子半径很小的杂质可以束缚电子,而原子半径远大于被取代的母体原子的杂质才可以束缚空穴。3.(生长后的热处理工艺中的)退火退火处理就是将晶体加热到其固相线以下的某个温度(一般为固相线以下50~100℃),恒温一段时间后再缓慢地降至室温。之所以进行退火处理是因为晶体生长是一个动态过程,不易保证温度不波动,而温度波动又可造成晶体内成分不均匀,且会引起一定的热应力。4.分凝系数对于固相-液相的界面,由于杂质在不同相中的溶解度不一样,所以杂质在界面两边材料中的浓度分布是不同的,这就是所谓杂质的分凝现象。这种杂质分凝作用的大小常常用所谓的分凝系数k来描述:即k=CS/CL。CS杂质在固相中的浓度,CL杂质在液相中的浓度。5.共晶反应(以二元系为例)二元系内一种3相共存的情况:6.电子迁移率电子迁移率是指电子在单位电场作用下的平均漂移速度,即电子在电场作用下运动速度的快慢的量度。半导体晶体中,迁移率直接与电子在晶体中碰撞间的平均自由时间相关,而平均自由时间则取决于各种散射的机制。其中最重要的两个机制为晶格散射及杂质散射。7.宽带隙半导体材料室温下禁带宽度大于2.2eV的半导体。主要用于短波长发光器件、紫外光探测和高温、高功率电子器件。常见的氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它们的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;8.本征点缺陷具有本征点缺陷的晶体,是指那些虽不含有外来杂质,但因其结构并不完善而形成点缺陷的晶体。这类晶体结构的不完善性表现为以下几种情况:(1)晶体中各组分偏离化学计量比;(2)点阵格位上缺少某些原子;(3)在格位间隙的地方存在间隙原子;(4)一类原子占据了另一类原子应该占据的格位。这样就在晶体中相应地形成了空位缺陷、间隙原子缺陷和错位缺陷(反结构缺陷、反位缺陷)等。9.均匀成核在相变或晶体生长过程中,新相核的发生和长大称为成核过程。所谓均匀成核,是指晶核在母相区域内各处的成核机率是相同的,而且须要克服相当大的表面能位垒,即须要相当大的过冷度才能成核10.非均匀成核在相变或晶体生长过程中,新相核的发生和长大称为成核过程。在实际的体系中,新相常以某些不均匀的部位作为核心而成长,例如过饱和的水蒸气常以灰尘为核心而凝聚成水滴,这种过程称为非均匀成核11.体系指我们所选定的研究对象,你研究什么物质,该物质就称为体系。体系以外与体系有相互作用的一切物质叫环境。例如,当我们研究甲醇水溶液的性质时,可以把一杯甲醇水溶液放在冰浴中,由于溶液是我们研究的对象,则溶液为体系;而烧杯和溶液上面的大气及冰浴,则为环境。12.THM方法、布里奇曼方法、区熔晶体生长方法(zonemelting)13.目前在GaAs工艺中用得最多的施主杂质是什么?为什么?14.SI-GaAs是如何获得的?深能级杂质在提高材料电阻率上是如何起作用的?什么是相变驱动力,三种系统的驱动力各是什么?15.试用类氢模型来进行估算GaAs晶体中的浅施主和浅受主的电离能Ei。,并根据计算结果说明杂质电离情况.Ei=13.6(1/2)(m*/m0)施主电离能EiD=0.005eV,受主电离能EiA=0.045eV(0.039)因此,对n型GaAs。即使在液氮温度(77K)下,其中的施主也将是全电离的。2分从而一般掺杂浓度的n型GaAs都将是简并的。16.指出下列材料是n型半导体,还是p型半导体;(1)GaAs中掺Zn;(2)InAs中合有稍微过量一点的In;(3)富Te条件下熔体生长的CdTe;(4)CdTe中掺入足够多的In;(5)WO2.99917、简述什么是组分过冷,并作图说明。答:掺杂的熔体在生长过程中如果有效分凝系数ke<1,固相中的杂质将不断地排向熔体,这样固液界面处将形成一个杂质富集区,它的分布情况如图中的C曲线所示。由于杂质增加,液相线在界面附近将会下降,如图中的TE曲线所示。如果熔体中的实际温度分布如TA所示,则将TA与TE相交的阴影区称为组分过冷区。处于这个区域的熔体,由于实际温度低于其液相线(TE),于是平坦界面的稳定性就会破坏,并转变为胞状界面。在这种条件下,生长会出现胞状组织、枝蔓结晶以及溶质尾迹等严重破坏晶体完整性的现象。18、题图为二元化合物相图,请(1)指出当体系的组分和压力处在图中各区域(包括线)给出的条件时,体系的状态;(2)指出共晶成分点和包晶成分点;(3)指出稳定化合物成分点(位置),该化合物是否为同成分熔化化合物?(4)假定有总组分在r点的物料(体系)从s点开始冷却到室温(即降温到r点),说明在此过程中体系的相变历程和各相组成变化过程;(5)体系从s点回到r点后,各相的相对含量各为多少?(设AmBn为A2B3,r点B的含量为摩尔比80%,b点B的含量为摩尔比95%)(1)1:L;2:α;3:β;4:α+L;5:L+β;6:L+AmBn;7:AmBn+β;8:α+βQmv为发生包晶反应的三相共存区;(2)p为共晶成分点;m点为包晶成分点(这里是化合物);(3)m点或AmBn;(4)L→L+β→到qmv区后发生如下包晶反应(L+β→AmBn)直到液相消失→AmBn+β当温度降到t点后,液相成分沿tq线变化,β相成分沿uv线变化;当温度降到w点后进入到三相共存区,液相成分已变到q,β相的成分已变到v,然后在恒温下发生包晶反应(L+β→AmBn)直到液相完全消失后温度继续下降,成为AmBn和β两相固溶体,其中β相成分沿vb线变化。(5)回到r点后,成为AmBn和β两相固溶体,AmBn/β=(95-80)/(80-60)=3/419化合物半导体材料,以砷化镓(GaAs)为例,有以下几个特点,一是发光效率比较高,二是电子迁移率高,同时可在较高温度和在其它恶劣的环境下工作,特别适合于制作超高速、超高频、低噪音的电路,它的另一个优势是可以实现光电集成,即把微电子和光电子结合起来,光电集成可大大的提高电路的功能和运算的速度。20氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;21什么是高电子迁移率晶体管(HEMT)22黄铜矿(CuFeS2)是典型的三元系化合物半导体,其原子排列的基本重复单元仍是四面体,但不再像金刚石或闪锌矿结构那样具有立方对称性。分子相当于两个ZnS分子的组合,只是其中的Zn分别被一个Cu和一个Fe所取代。因此,黄铜矿结构的晶胞可以用两个相邻的闪锌矿晶胞组合而成,只是要按照上述法则将其中的全部Zn原子用Cu原子和Fe原子替换。可以将这一结构看成是两个II-VI族化合物分子之中的II族原子被一个III族和一个I族原子取代之后的结果,例如CuInS2、AgGaS2等。同样,如果利用一个II族原子和一个IV族原子取代两个III-V族化合物分子中的III族原子,也会得到一系列II-IV-V2族三元化合物,例如CdGeAs2、ZnSnAs2、CdGeP2、ZnSnP2等。所有这些三元化合物都被统称为黄铜矿型化合物半导体。以此类推,四元化合物I2-II-IV-VI4可以看作分别用一个II族原子和一个IV族原子代替两个I-III-VI2三元化合物分子中的III族原子而构成。例如,Cu2FeSnS4可以认为是Fe原子和Sn原子取代了CuAlS2分子中的Al原子,Cu2CdSnTe4可以认为是Cd原子和Sn原子取代了CuAlTe2分子中的Al原子。这些材料就是所谓的黄锡矿,也具有半导体性质。23固溶体的基本特征,表现为其物理性质一般会连续地随组分比的变化而变化。其晶格常数a服从Vegard关系,对于由A、B两种材料组成的固溶体,其晶格常数aAB=xaA+(1-x)aB固溶体直接能隙随组分比变化的函数关系,通常有两种方式来进行定量的描述。某些固溶体的直接能隙可表示为组分比x的线性函数,即1.8式中,和分别是互溶材料A和B的直接能隙宽度。但是,大多数固溶体直接能隙随组分比的变化不符合上述线性规律,但可用以下模型统一表示:Eg=a+bx+cx21.9式中,a、b、c皆为常数。24固溶体的基本特征,表现为其物理性质一般会连续地随组分比的变化而变化。其晶格常数a服从Vegard关系,已知CdTe和ZnTe的晶格常数分别为,试计算Cd0.9Zn0.1Te、的晶格常数25固溶体的基本特征,表现为其物理性质一般会连续地随组分比的变化而变化。试计算Cd0.9Zn0.1Te的禁带宽度Egap(ev)=1.606+0.322x+0.463x2…26电子迁移率是指电子在单位电场作用下的平均漂移速度,即电子在电场作用下运动速度的快慢的量度。半导体晶体中,迁移率直接与电子在晶体中碰撞间的平均自由时间相关,而平均自由时间则取决于各种散射的机制。其中最重要的两个机制为晶格散射及杂质散射。晶格散射归因于在任何高于绝对零度下晶格原子的热振动。这些振动扰乱了晶格的周期势场,并且允许能量在载流子与晶格间相互转移。既然晶格振动随温度增加而增加,在高温下晶格散射自然变得显著,迁移率也因此随着温度的增加而减少。27如果各种缺陷在整个晶体中杂乱无序地分布着,那么就存在一定的机会,使得两个或更多的缺陷可能会占据着相邻的格位。这样它们就可以互相缔合,形成缺陷的缔合体,可以生成二重、三重缔合体。缺陷浓度低时.这种相邻缺陷的缔合数就少。缺陷之间最重要的吸引力是具有异性电荷缺陷之间的库仑引力。另一方面由于热运动,缔合起来的缺陷也可以以一定的几率分解为单一的缺陷。因此.在低温下以及在没有动力势垒的情况下,容易产生缔合缺陷;反应温度愈高,则缔合缺陷的浓度也愈小。28气相晶体生长方法已经获得很大的发展,演变出多种晶体生长技术。基本上可以按照如下方法归纳为物理气相生长方法和化学气相生长方法两大类:(1)物理气相生长包括升华-凝结法、物理气相输运法、分子束法、阴极溅射法。(2)化学气相沉积包括气体分解法、气体合成法、多元气相反应法(如金属有机物化学气相沉积法等)、化学气相输运法、气-液-固生长法(VLS)。29坩埚材料的选择是晶体生长过程能否实现以及晶体结晶质量优劣的控制因素之一。坩埚材料的选择是由所生长的晶体及其在熔融状态下的性质决定的。对给定的晶体材料,所选坩埚材料应该满足以下物理化学性质:(1)有较高的化学稳定性,不与晶体或熔体发生化学反应。(2)具有足够高的纯度,不会在晶体生长过程中释放出对晶体有害的杂质、污染晶体材料,或与晶体发生粘连。(3)具有较高的熔点和高温强度,在晶体生长温度下仍保持足够高的强度,并且在高温下不会发生分解、氧化等。(4)具有一定的导热能力,便于在加热区对熔体加热或在冷却区进行晶体的冷却。但导热能力太强对晶体生长是不利的。坩埚的导热特性对晶体生长过程的影响较为复杂,通过具体的传热计算才能准确理解。(5)具有可加工性,便于根据晶体生长的需要加工成不同的形状。特别是在生长高蒸气压或易氧化的材料时,要进行坩埚的焊封,对其可加工性和高温强度要求更高。(6)具有与晶体材料匹配的热膨胀特性,不会在晶体生长过程中对晶体形成较大的压应力,并在晶体生长结束后易于取出。30.在Bridgman晶体生长技术的温场设计中,结晶点温度应该设置在温场中的哪个位置?试从对晶体质量影响因素方面进行分析。Bridgman晶体生长技术的温场分布分为高温区(
本文标题:化合物半导体20132014复习题
链接地址:https://www.777doc.com/doc-4475244 .html