您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 小学六年级数学第讲:排列组合(教师版)
第十九讲排列组合一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n个不同的元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同的元素的排列中取出m个元素的排列数,我们把它记做mnP.根据排列的定义,做一个m元素的排列由m个步骤完成:步骤1:从n个不同的元素中任取一个元素排在第一位,有n种方法;步骤2:从剩下的(1n)个元素中任取一个元素排在第二位,有(1n)种方法;……步骤m:从剩下的[(1)]nm个元素中任取一个元素排在第m个位置,有11nmnm()(种)方法;由乘法原理,从n个不同元素中取出m个元素的排列数是121nnnnm()()(),即12.1mnPnnnnm()()(),这里,mn,且等号右边从n开始,后面每个因数比前一个因数小1,共有m个因数相乘.二、排列数一般地,对于mn的情况,排列数公式变为12321nnPnnn()().表示从n个不同元素中取n个元素排成一列所构成排列的排列数.这种n个排列全部取出的排列,叫做n个不同元素的全排列.式子右边是从n开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n,读做n的阶乘,则nnP还可以写为:!nnPn,其中!12321nnnn()() .在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.三、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n个不同元素中取出m个(mn)元素组成一组不计较组内各元素的次序,叫做从n个不同元素中取出m个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n个不同元素中取出m个元素(mn)的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数.记作mnC.一般地,求从n个不同元素中取出的m个元素的排列数mnP可分成以下两步:第一步:从n个不同元素中取出m个元素组成一组,共有mnC种方法;第二步:将每一个组合中的m个元素进行全排列,共有mmP种排法.根据乘法原理,得到mmmnnmPCP.因此,组合数12)112321mmnnmmPnnnnmCmmmP()(()()().这个公式就是组合数公式.四、组合数的重要性质一般地,组合数有下面的重要性质:mnmnnCC(mn)这个公式的直观意义是:mnC表示从n个元素中取出m个元素组成一组的所有分组方法.nmnC表示从n个元素中取出(nm)个元素组成一组的所有分组方法.显然,从n个元素中选出m个元素的分组方法恰是从n个元素中选m个元素剩下的(nm)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255CC.规定1nnC,01nC.五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.六、使用插板法一般有如下三种类型:⑴m个人分n个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n个空隙中放上(1)m个插板,所以分法的数目为11mnC.⑵m个人分n个东西,要求每个人至少有a个.这个时候,我们先发给每个人(1)a个,还剩下[(1)]nma个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1mnmaC.⑶m个人分n个东西,允许有人没有分到.这个时候,我们不妨先借来m个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()nm个,因此分法的数目为11mnmC.1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。5.根据不同题目灵活运用计数方法进行计数。例1:小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人.小新、阿呆不在同一排。【解析】(1)775040P(种)。(2)只需排其余6个人站剩下的6个位置.66720P(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P=1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P(种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400PP(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。例2:用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【解析】个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n,2m,根据排列数公式,一共可以组成255420P(个)符合题意的三位数。例3:用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?【解析】按位数来分类考虑:⑴一位数只有1个3;⑵两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成22212P(个)不同的两位数,共可组成248(个)不同的两位数;⑶三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一组可以组成333216P(个)不同的三位数,共可组成6424(个)不同的三位数;⑷四位数:可由1,2,4,5这四个数字组成,有44432124P(个)不同的四位数;⑸五位数:可由1,2,3,4,5组成,共有5554321120P(个)不同的五位数.由加法原理,一共有182424120177(个)能被3整除的数,即3的倍数.例4:某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456(个)不同的四位数,即确保能打开保险柜至少要试56次.例5:两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?【解析】第一个位置在6个人中任选一个,有166C(种)选法,第二个位置在另一胞胎的3人中任选一个,有133C(种)选法.同理,第3,4,5,6个位置依次有2,2,1,1种选法.由乘法原理,不同的坐法有11111163221163221172PPPPPP(种)。例6:一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】设A:BCDE是满足题意的时刻,有A为8,B、D应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P种选法,而C、E应从剩下的7个数字中选择两个不同的数字,所以有27P种选法,所以共有26P×27P=1260种选法。从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。例7:一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6个数字重新排列,最少还能排出多少个能被11整除的六位数?【解析】设这个六位数为abcdef,则有()ace、()bdf的差为0或11的倍数.且a、b、c、d、e、f均不为0,任何一个数作为首位都是一个六位数。先考虑a、c、e偶数位内,b、d、f奇数位内的组内交换,有33P×33P=36种顺序;再考虑形如badcfe这种奇数位与偶数位的组间调换,也有33P×33P=36种顺序。所以,用均不为0的a、b、c、d、e、f最少可排出36+36=72个能被11整除的数(包含原来的abcdef)。所以最少还能排出72-1=71个能被11整除的六位数。例8:已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?【解析】这道题乍一看不太像是排列问题,这就需要灵活地对问题进行转化.仔细审题,已知“甲和乙都未拿到冠军”,而且“乙不是最差的”,也就等价于5人排成一排,甲、乙都不站在排头且乙不站在排尾的排法数,因为乙的限制最多,所以先排乙,有3种排法,再排甲,也有3种排法,剩下的人随意排,有333216P(种)排法.由乘法原理,一共有33654(种)不同的排法。例9:4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.【解析】⑴先排甲,9个位置除了中间和两端之外的6个位置都可以,有6种选择,剩下的8个人随意排,也就是8个元素全排列的问题,有888765432140320P(种)选择.由乘法原理,共有640320241920(种)排法.⑵甲、乙先排,有22212P(种)排法;剩下的7个人随
本文标题:小学六年级数学第讲:排列组合(教师版)
链接地址:https://www.777doc.com/doc-4491973 .html