您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作计划 > 7-1-2-加法原理之分类枚举(二).教师版
7-1-2.加法原理之分类枚举(二).题库教师版page1of81.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k类方法,第一类方法中有1m种不同做法,第二类方法中有2m种不同做法,…,第k类方法中有km种不同做法,则完成这件事共有12kNmmm……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.知识要点教学目标7-1-2.加法原理之分类枚举(二)7-1-2.加法原理之分类枚举(二).题库教师版page2of8分类枚举——找规律【例1】有一个电子表的表面用2个数码显示“小时”,另用2个数码显示“分”。例如“21:32”表示21时32分,那么这个手表从“10:00”至“11:30”之间共有分钟表面上显示有数码“2”.【考点】加法原理之分类枚举【难度】3星【题型】填空【关键词】学而思杯,6年级,1试,第9题【解析】显示小时的数码不会出现2,只有分钟会出现。10点到11点分别有2,12,20,21,22,……,29,32,42,52,共15次,11点到11点半有2,12,20,21,22,……,29共12次,所以有27分钟。【答案】27分钟【例2】袋中有3个红球,4个黄球和5个白球,小明从中任意拿出6个球,他拿出球的情况共有________种可能.【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想,迎春杯,四年级,初赛,6题【【解解析析】】如果没拿红球,那么拿(黄、白)球的可能有(1、5)、(2、4)、(3、3)、(4、2)4种.如果拿1个红球,那么拿(黄、白)球的可能有(0、5)(1、4)、(2、3)、(3、2)、(4、1)5种.如果拿2个红球,那么拿(黄、白)球的可能有(0、4)、(1、3)、(2、2)(3、1)、(4、0)5种如果拿3个红球,那么拿(黄、白)球的可能有(0、3)、(1、2)、(2、1)、(3、0)4种.可见他拿出球的情况共有:4+5+5+4=18(种).有18种.【答案】18种【例3】1、2、3、4四个数字,从小到大排成一行,在这四个数中间,任意插入乘号(最少插一个乘号),可以得到多少个不同的乘积?【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想【解析】方法一:按插入乘号的个数进行分类:⑴若插入一个乘号,4个数字之间有3个空当,选3个空当中的任一空当放乘号,所以有3种不同的插法,可以得到3个不同的乘积,枚举如下:1234,1234,1234.⑵若插入两个乘号,由于必有一个空当不放乘号,所以从3个空档中选2个空当插入乘号有3种不同的插法,可以得到3个不同的乘积,枚举如下:1234,1234,1234.⑶若插入三个乘号,则只有1个插法,可以得到l个不同的乘积,枚举如下:1234.所以,根据加法原理共有3317种不同的乘积.方法二:每个空可以放入乘号可以可以不放乘号共有两种选择,在1、2、3、4这四个数中共有3个空所以共有:222=8去掉都不放的一种情况,所以共有:81=7(种)选择【答案】7【例4】1995的数字和是1+9+9+5=24,问:小于2000的四位数中数字和等于26的数共有多少个?【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想【解析】小于2000的四位数千位数字是1,要它数字和为26,只需其余三位数字和是25.因为十位、个位数字和最多为9+9=18,因此,百位数字至少是7.于是百位为7时,只有1799,一个;百位为8时,只有1889,1898,二个;百位为9时,只有1979,1997,1988,三个;总计共1+2+3=6个.【答案】6例题精讲7-1-2.加法原理之分类枚举(二).题库教师版page3of8【巩固】1995的数字和是1+9+9+5=24,问:小于2000的四位数中数字和等于24的数共有多少个?【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想【解析】小于2000的四位数千位数字是1,要它数字和为24,只需其余三位数字和是23.因为十位、个位数字和最多为9918,因此,百位数字至少是5.于是百位为5时,只有1599一个;百位为6时,只有1689,1698两个;百位为7时,只有1779,1788,1797三个;百位为8时,只有1869,1878,1887,1896四个;百位为9时,只有1959,1968,1977,1986,1995五个;根据加法原理,总计共1234515个.【答案】15【巩固】2007的数字和是2+0+0+7=9,问:大于2000小于3000的四位数中数字和等于9的数共有多少个?【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想【解析】大于2000小于3000的四位数千位数字是2,要它数字和为9,只需其余三位数字和是7.因此,百位数字至多是7.于是根据百位数进行分类:第一类,百位为7时,只有2700一个;第二类,百位为6时,只有2610,2601两个;第三类,百位为5时,只有2520,2511,2502三个;第四类,百位为4时,只有2430,2421,2412,2403四个;第五类,百位为3时,只有2340,2331,2322,2313,2304五个;第六类,百位为2时,只有2250,2241,2232,2223,2214、2205六个;第七类,百位为1时,只有2160,2151,2142,2133,2124、2115、2106七个;第八类,百位为0时,只有2070,2061,2052,2043,2034、2025、2016、2007八个;根据加法原理,总计共1234567836个.【答案】36【例5】从101到900这800个自然数中,数字和被8整除的数共有______个。【考点】加法原理之分类枚举【难度】5星【题型】填空【关键词】走美杯,四年级,初赛,第13题【解析】数字和被8整除,则数字和可能为8、16、24①数字和8=8+0+0=7+1+0=6+2+0=5+3+0=4+4+0=6+1+1=5+2+1=4+3+1=4+2+2=3+3+2这样的数共有13222332636个②数字和16=9+7+0=8+8+0=9+6+1=9+5+2=9+4+3=8+7+1=8+6+2=8+5+3=8+4+4=……这样的数共有58个③数字和=24=9+9+6=9+8+7=8+8+8这样的数共有6个所以满足题意的数字共有100个【答案】100个【巩固】在四位数中,各位数字之和是4的四位数有多少?【考点】加法原理之分类枚举【难度】4星【题型】解答【关键词】分类讨论思想【解析】以个位数的值为分类标准,可以分成以下几类情况来考虑:第1类——个位数字是0,满足条件的数共有10个.其中:⑴十位数字为0,有4000、3100、2200、1300,共4个;⑵十位数字为1,有3010、2110、1210,共3个;⑶十位数字为2,有2020、1120,共2个;⑷十位数字为3,有1030,共1个.第2类——个位数字是1,满足条件的数共有6个.其中:⑴十位数字为0,有3001、2101、1201,共3个;7-1-2.加法原理之分类枚举(二).题库教师版page4of8⑵十位数字为1,有2011、1111,共2个;⑶十位数字为2,有1021,满足条件的数共有1个.第3类——个位数字是2,满足条件的数共有3个.其中:⑴十位数字为0,有2002、1102,共2个;⑵十位数字为1,有1012,共1个.第4类——个位数字是3,满足条件的数共有1个.其中:十位数字是0,有l003,共1个.根据上面分析,由加法原理可求出满足条件的数共有1063120个.【答案】20【例6】将1~999这999个自然数排成一行(不一定按从大到小或从小到大的顺序排列),得到一个2889位数,那么数字串“123”最多能出现次.【考点】加法原理之分类枚举【难度】5星【题型】填空【关键词】迎春杯,高年级,复试,4题【【解解析析】】构成数字串“123”的方式有很多,它可能是由一个数单独构成,也可能是由两个数或三个数构成.统计数字串“123”出现的次数,最好的办法就是对其进行分类统计.我们将出现的“123”分为如下几类:就是123三位数本身,一个;1和23分别属于两个不同的多位数,那么后面这个数可能是23或以23开头的三位数.23或以23开头的三位数有23,230,231,232,…,238,239共11个,而以1结尾的数远远多于11个,所以这类最多有11个;12和3分别属于两个不同的多位数,那么前面这个数可能是12或以12结尾的三位数.12或以12结尾的三位数有12,112,212,312,…,812,912共10个,而以3结尾的数远远多于10个,最多有10个;1、2和3分别属于三个不同的多位数,那么中间这个数只能是2,最多出现1次.综上,最多出现11110123次,而且易看出可以达到.【答案】23次【例7】将10、16以及另外4个不同的自然数填入下面六个□,使这6个自然数从左到右构成等差数列,一共有种不同的填法。□□□□□□【考点】加法原理之分类枚举【难度】5星【题型】填空【关键词】学而思杯,4年级,第6题【解析】由于10和16都在该等差数列当中,所以该等差数列的公差是16与10之差的约数,即只能是1,2,3,6,对这些公差分别讨论:(1)当公差为1时,两个数所在的位置相隔5格,但一共只有6个方格,所以该情况不存在。(2)当公差为2时,两个数所在的位置相隔2格,在保证数列中各个数都是自然数的情况下,可以枚举326种填法。(3)当公差为3时,两个数所在的位置相隔1格,在保证数列中各个数都是自然数的情况下,可以枚举出428种填法。(4)当公差为6时,两个数所在的位置相邻,在保证数列中各个数都是自然数的情况下,只能枚举出224种填法。所以一共只有68418种填法。【答案】18【
本文标题:7-1-2-加法原理之分类枚举(二).教师版
链接地址:https://www.777doc.com/doc-4498527 .html