您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 线面角、面面角强化训练(含答案)
线面角、面面角强化训练一.解答题(共24小题)1.(2012•浙江)如图,在侧棱垂直底面的四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AD⊥AB,AB=.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:(i)EF∥A1D1;(ii)BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.2.(2010•湖南)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.3.(2009•湖南)如图,在正三棱柱ABC﹣A1B1C1中,AB=4,AA1=,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.4.(2008•上海)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的大小(结果用反三角函数值表示).5.(2005•黑龙江)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点.(1)求证:EF⊥面PAB;(2)若,求AC与面AEF所成的角.6.如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.7.(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.8.(2008•安徽)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.9.(2005•北京)如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.(Ⅰ)求证AC⊥BC1;(Ⅱ)求证AC1∥平面CDB1;(Ⅲ)求异面直线AC1与B1C所成角的余弦值.10.(2009•江西)在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以AC的中点O为球心、AC为直径的球面交PD于点M,交PC于点N(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成的角的大小;(3)求点N到平面ACM的距离.11.(2008•海南)如图,已知点P在正方体ABCD﹣A′B′C′D′的对角线BD′上,∠PDA=60°.(Ⅰ)求DP与CC′所成角的大小;(Ⅱ)求DP与平面AA′D′D所成角的大小.12.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.13.(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(Ⅰ)求异面直线CC1和AB的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣B1的平面角的余弦值.14.(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.15.(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.16.(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.(Ⅰ)求直线PC与平面ABC所成的角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.17.(2012•山东)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F﹣BD﹣C的余弦值.18.(2011•辽宁)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:平面PQC⊥平面DCQ(II)求二面角Q﹣BP﹣C的余弦值.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.20.如图,已知正三棱柱ABC﹣A1B1C1的,底面边长是侧棱长2倍,D、E分别是AC、A1C1的中点;(Ⅰ)求证:直线AE∥平面BDC1;(Ⅱ)求证:直线A1D⊥平面BDC1;(Ⅲ)求直线A1C1与平面BDC1所成的角.21.已知斜三棱柱ABC﹣A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1.(Ⅰ)求证:AC1⊥平面A1BC;(Ⅱ)求C1到平面A1AB的距离;(Ⅲ)求二面角A﹣A1B﹣C的余弦值.22.已知在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求PC与平面ABCD所成角的大小;(Ⅲ)求二面角P一EC一D的大小.23.如图,ABCD﹣A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.(1)求证:A1F⊥C1E;(2)当A1、E、F、C1共面时,求:①D1到直线C1E的距离;②面A1DE与面C1DF所成二面角的余弦值.24.如图,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.(Ⅰ)求证:AC1∥平面CDB1;(Ⅱ)求点B到平面CDB1的距离;(Ⅲ)求二面角B﹣B1C﹣D的大小.线面角、面面角强化训练参考答案与试题解析一.解答题(共24小题)1.(2012•浙江)如图,在侧棱垂直底面的四棱柱ABCD﹣A1B1C1D1中,AD∥BC,AD⊥AB,AB=.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:(i)EF∥A1D1;(ii)BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.考点:直线与平面所成的角;直线与平面垂直的判定.716536专题:综合题.分析:(1)(i)先由C1B1∥A1D1证明C1B1∥平面ADD1A1,再由线面平行的性质定理得出C1B1∥EF,证出EF∥A1D1.(ii)易通过证明B1C1⊥平面ABB1A1得出B1C1⊥BA1,再由tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B,得出BA1⊥B1F.所以BA1⊥平面B1C1EF;(2)设BA1与B1F交点为H,连接C1H,由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在RT△BHC1中求解即可.解答:(1)证明(i)∵C1B1∥A1D1,C1B1⊄平面ADD1A1,∴C1B1∥平面ADD1A1,又C1B1⊂平面B1C1EF,平面B1C1EF∩平面平面ADD1A1=EF,∴C1B1∥EF,∴EF∥A1D1;(ii)∵BB1⊥平面A1B1C1D1,∴BB1⊥B1C1,又∵B1C1⊥B1A1,∴B1C1⊥平面ABB1A1,∴B1C1⊥BA1,在矩形ABB1A1中,F是AA1的中点,tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B,故BA1⊥B1F.所以BA1⊥平面B1C1EF;(2)解:设BA1与B1F交点为H,连接C1H,由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在矩形AA1B1B中,AB=,AA1=2,得BH=,在RT△BHC1中,BC1=2,sin∠BC1H==,所以BC1与平面B1C1EF所成的角的正弦值是.点评:本题考查空间直线、平面位置故选的判定,线面角求解.考查空间想象能力、推理论证能力、转化、计算能力.2.(2010•湖南)如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.考点:直线与平面平行的判定;直线与平面所成的角.716536专题:计算题;证明题.分析:(I)先取AA1的中点M,连接EM,BM,根据中位线定理可知EM∥AD,而AD⊥平面ABB1A1,则EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,则∠EBM直线BE与平面ABB1A1所成的角,设正方体的棱长为2,则EM=AD=2,BE=3,于是在RT△BEM中,求出此角的正弦值即可.(II)在棱C1D1上存在点F,使B1F平面A1BE,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1,B1C1,BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,根据中位线定理可知EG∥A1B,从而说明A1,B,G,E共面,则BG⊂面A1BE,根据FG∥C1C∥B1G,且FG=C1C=B1B,从而得到四边形B1BGF为平行四边形,则B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,根据线面平行的判定定理可知B1F∥平面A1BE.解答:解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=,于是在RT△BEM中,即直线BE与平面ABB1A1所成的角的正弦值为.(II)在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,因A1D1,B1C1,BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,因此因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E共面,所以BG⊂A1BE因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1G,且FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.点评:本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.3.(2009•湖南)如图,在正三棱柱ABC﹣A1B1C1中,AB=4,AA1=,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.考点:平面与平面垂直的判定;直线与平面所成的角.716536专题:计算题;证明题.分析:(1)先由正三棱柱ABC﹣A1B1C1的性质知AA1⊥平面ABC,⇒DE⊥AA1.再由DE⊥A1E⇒DE⊥平面ACC1A1.即可得出结论;(2)设O是AC的中点.先建立一个以O为原点建立空间直角坐标系,得到相关各点的坐标.再利用线面角的求法在空间直角坐标系内找到直
本文标题:线面角、面面角强化训练(含答案)
链接地址:https://www.777doc.com/doc-4513696 .html