您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 华东师大版数学八年级下册优秀课件17.5-第3课时-建立反比例函数的模型解决实际问题
华东师大版八年级下册精品课件本课件来源于网络只供免费交流使用17.5实践与探索第17章函数及其图象导入新课讲授新课当堂练习课堂小结八年级数学下(HS)教学课件3.建立反比例函数的模型解决实际问题学习目标1.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.2.能够通过分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步提高运用函数的图象、性质的综合能力.(重点、难点)3.能够根据实际问题确定自变量的取值范围.导入新课对于一个长方形,当它面积一定时,长a是宽b的反比例函数,其函数解析式可以写为(S>0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数解析式.实例:函数解析式:.三角形的面积S一定时,三角形底边长y是高x复习引入Sab2Syx(S>0)的反比例函数;实际问题与反比例函数一例1市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?讲授新课解:根据圆柱体的体积公式,得Sd=104,∴S关于d的函数解析式为410.Sd典例精析(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?解得d=20.如果把储存室的底面积定为500m²,施工时应向地下掘进20m深.解:把S=500代入,得410Sd410500d,(3)当施工队按(2)中的计划掘进到地下15m时,公司临时改变计划,把储存室的深度改为15m.相应地,储存室的底面积应改为多少(结果保留小数点后两位)?解得S≈666.67.当储存室的深度为15m时,底面积应改为666.67m².解:根据题意,把d=15代入,得410Sd41015S,第(2)问和第(3)问与过去所学的解分式方程和求代数式的值的问题有何联系?第(2)问实际上是已知函数S的值,求自变量d的取值,第(3)问则是与第(2)问相反.想一想:长方形面积为6,它的长y与宽x之间的函数关系用图象可表示为()B练一练A.B.C.D.xyxyxyxy例2码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间有怎样的函数关系?提示:根据平均装货速度×装货天数=货物的总量,可以求出轮船装载货物的总量;再根据平均卸货速度=货物的总量÷卸货天数,得到v关于t的函数解析式.解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数解析式为240.vt(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?从结果可以看出,如果全部货物恰好用5天卸载完,则平均每天卸载48吨.而观察求得的反比例函数的解析式可知,t越小,v越大.这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.解:把t=5代入,得240vt24048.vt练一练某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走.(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数关系式;解:1200.yx(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?解:x=12×5=60,代入函数解析式得120020.60y答:若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用20天才能运完.(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?解:运了8天后剩余的垃圾有1200-8×60=720(立方米),剩下的任务要在不超过6天的时间完成,则每天至少运720÷6=120(立方米),所以需要的拖拉机数量是:120÷12=10(辆),即至少需要增加拖拉机10-5=5(辆).例3小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N和0.5m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5m时,撬动石头至少需要多大的力?反比例函数在物理中的应用二解:根据“杠杆原理”,得Fl=1200×0.5,∴F关于l的函数解析式为600.Fl当l=1.5m时,600400.1.5F因此撬动石头至少需要400N的力.(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?解:当F=400×=200时,由200=得12600l6003200l,3-1.5=1.5(m).对于函数,当l>0时,l越大,F越小.因此,若想用力不超过400N的一半,则动力臂至少要加长1.5m.600Fl想一想:在物理中,我们知道,在阻力和阻力臂一定的情况下,动力臂越长就越省力,你能用反比例函数的知识对其进行解释吗?假定地球重量的近似值为6×1025牛顿(即阻力),阿基米德有500牛顿的力量,阻力臂为2000千米,请你帮助阿基米德设计,该用多长动力臂的杠杆才能把地球撬动?由已知得F×l=6×1025×2×106=1.2×1032,当F=500时,l=2.4×1029米,解:2000千米=2×106米,练一练变形得:321.210.Fl故用2.4×1029米长的动力臂的杠杆才能把地球撬动.例4某校科技小组进行野外考察,利用铺垫木板的方式通过一片烂泥湿地.当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)也随之变化变化.如果人和木板对湿地地面的压力合计为600N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?解:由得FpS600.pSp是S的反比例函数,因为给定一个S的值,对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数.(2)当木板面积为0.2m2时,压强是多少?解:当S=0.2m2时,故当木板面积为0.2m2时,压强是3000Pa.6003000.0.2p(3)如果要求压强不超过6000Pa,木板面积至少要多大?解:当p=6000时,由得6006000S6000.1.6000S对于函数,当S>0时,S越大,p越小.因此,若要求压强不超过6000Pa,则木板面积至少要有0.1m2.600pS(4)在直角坐标系中,作出相应的函数图象.20000.10.5O0.60.30.20.410003000400050006000S/m2p/Pa解:如图所示.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300N/m2,那么此人必须站立在面积为多少的木板上才不至于下陷(木板的重量忽略不计)()A.至少2m2B.至多2m2C.大于2m2D.小于2m2练一练204060O602040S/m2p/(N/m2)A例5一个用电器的电阻是可调节的,其范围为110~220Ω.已知电压为220V,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?U~解:根据电学知识,当U=220时,得2220.pR(2)这个用电器功率的范围是多少?解:根据反比例函数的性质可知,电阻越大,功率越小.把电阻的最小值R=110代入求得的解析式,得到功率的最大值把电阻的最大值R=220代入求得的解析式,得到功率的最小值2220440110p;2220220.220p因此用电器功率的范围为220~440W.1.在公式中,当电压U一定时,电流I与电阻R之间的函数关系可用图象大致表示为()D练一练A.B.C.D.IRIRIRIRUIR2.在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值.解:(1)设∵当电阻R=5欧姆时,电流I=2安培,∴U=10.∴I与R之间的函数关系式为UIR,10.IR100.5R(2)当I=0.5安培时,,解得R=20(欧姆).当堂练习1.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象可大致表示为()A.xy1O2xy4O4B.xy1O4C.xy1O414D.C2.(1)体积为20cm3的面团做成拉面,面条的总长度y(单位:cm)与面条粗细(横截面积)S(单位:cm2)的函数关系为.(2)某家面馆的师傅手艺精湛,他拉的面条粗1mm2,则面条的总长度是cm.20ySS>020003.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不大于B.小于C.不小于D.大于CO60V/m3p/kPa1.6345m345m345m345m4.受条件限制,无法得知撬石头时的阻力,小刚选择了动力臂为1.2米的撬棍,用了500牛顿的力刚好撬动;小明身体瘦小,只有300牛顿的力量,他该选择动力臂为的撬棍才能撬动这块大石头.2米5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10m3时,气体的密度是.21345V/m3ρ/(kg/m3)5O632411kg/m36.蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;解:设,把M(4,9)代入得k=4×9=36.∴这个反比例函数的表达式为.kIR36IRO9I(A)4R(Ω)M(4,9)(2)当R=10Ω时,电流能是4A吗?为什么?解:当R=10Ω时,I=3.6≠4,∴电流不可能是4A.7.在某村河治理工程施工过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示.(1)请根据题意,求y与x之间的函数表达式;5024x(m/天)y(天)O解:1200.yx(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠15m,问该工程队需用多少天才能完成此项任务?解:由图象可知共需开挖水渠24×50=1200(m);2台挖掘机需要1200÷(2×15)=40(天).(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少m?解:1200÷30=40(m),故每天至少要完成40m.课堂小结实际问题中的反比例函数过程:分析实际情境→建立函数模型→明确数学问题注意:实际问题中的两个变量往往都只能取非负值;作实际问题中的函数图象时,横、纵坐标的单位长度不一定相同学习的关键方法的选择课后作业
本文标题:华东师大版数学八年级下册优秀课件17.5-第3课时-建立反比例函数的模型解决实际问题
链接地址:https://www.777doc.com/doc-4516927 .html