您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 新人教版八上数学培优讲义(15讲)
1第一讲三角形考点·方法·破译1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线.2.知道三角形两边的和大于第三边,两边之差小于第三边.3.了解与三角形有关的角(内角、外角).4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和.5.会用方程的思想解与三角形基本要素相关的问题.6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.经典·考题·赏析【例1】若的三边分别为4,x,9,则x的取值范围是______________,周长l的取值范围是______________;当周长为奇数时,x=______________.【变式题组】1.若△ABC的三边分别为4,x,9,且9为最长边,则x的取值范围是______________,周长l的取值范围是______________.2.设△ABC三边为a,b,c的长度均为正整数,且a<b<c,a+b+c=13,则以a,b,c为边的三角形,共有______________个.3.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是().A.1B.2C.3D.4【例2】已知等腰三角形的一边长为18cm,周长为58cm,试求三角形三边的长.【变式题组】1.已知等腰三角形两边长分别为6cm,12cm,则这个三角形的周长是()A.24cmB.30cmC.24cm或30cmD.18cm2.已知三角形的两边长分别是4cm和9cm,则下列长度的四条线段中能作为第三条边的是()A.13cmB.6cmC.5cmD.4cm3.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为______________.【例3】如图AD是△ABC的中线,DE是△ADC的中线,EF是△DEC的中线,FG是△EFC的中线,若S△GFC=1cm2,则S△ABC=______________.GFEDBAC2【变式题组】1.如图,已知点D、E、F分别是BC、AD、BE的中点,S△ABC=4,则S△EFC=______________.(第1题图)FEDBAC2.如图,点D是等腰△ABC底边BC上任意一点,DE⊥AB于E,DF⊥AC于F,若一腰上的高为4cm,则DE+DF=______________.3.如图,已知四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE于F,则DF与AB的数量关系是______________.【例4】已知,如图,则∠A+∠B+∠C+∠D+∠E=______________.(例4题图)BDACE【变式题组】1.如图,则∠A+∠B+∠C+∠D+∠E=______________.2.如图,则∠A+∠B+∠C+∠D+∠E+∠F=______________.3.如图,则∠A+∠B+∠C+∠D+∠E+∠F=______________.(第3题图)ABCDEF【例5】如图,已知∠A=70°,BO、CO分别平分∠ABC、∠ACB.则∠BOC=______________.OBAC(第2题图)FEBCAD(第3题图)FDBCAE(第2题图)ABFEDC(第1题图)ABEDC3【变式题组】1.如图,∠A=70°,∠B=40°,∠C=20°,则∠BOC=______________.(第1题图)OBAC3.如图,∠O=140°,∠P=100°,BP、CP分别平分∠ABO、∠ACO,则∠A=______________.【例6】如图,已知∠B=35°,∠C=47°,AD⊥BC,AE平分∠BAC,则∠EAD=______________.【变式题组】1.(改)如图,已知∠B=39°,∠C=61°,BD⊥AC,AE平分∠BAC,则∠BFE=__________.2.如图,在△ABC中,∠ACB=40°,AD平分∠BAC,∠ACB的外角平分线交AD的延长线于点P,点F是BC上一动点(F、D不重合),过点F作EF⊥BC交于点E,下列结论:①∠P+∠DEF为定值,②∠P-∠DEF为定值中,有且只有一个答案正确,请你作出判断,并说明理由.*【例7】如图,在平面内将△ABC绕点A逆时针旋转至△AB′C′,使CC′∥AB,若∠BAC=70°,则旋转角α=______________.【变式题组】1.如图,用等腰直角三角形板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的直角α=______________.(第3题图)POBAC(例6题图)EDABC(第2题图)DEPCAGBF(第1题图)FEDABCC'B'ABC4(第1题图)α22°OBMA2.如图,在平面内将△AOB绕点O顺时针旋转α角度得到△OA′B′,若点A′在AB上时,则旋转角α=______________.(∠AOB=90°,∠B=30°)3.如图,△ABE和△ACD是△ABC沿着AB边,AC边翻折180°形成的,若∠BAC=130°,则∠α=______________.演练巩固·反馈提高1.如图,图中三角形的个数为()A.5个B.6个C.7个D.8个2.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不确定3.有4条线段,长度分别是4cm,8cm,10cm,12cm,选其中三条组成三角形,可以组成三角形的个数是()A.1个B.2个C.3个D.4个4.下列语句中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形的一个外角等于这个三角形的两个内角的和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角5.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定6.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定7.如果等腰三角形的一边长是5cm,另一边长是9cm,则这个三角形的周长是______________.8.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是______________.9.如图,在△ABC中,∠A=42°,∠B与∠C的三等分线,分别交于点D、E,则∠BDC的度数是______________.(第2题图)B'A'AOB(第3题图)αEDCBAEDABCFG5(第9题图)DEBAC10.如图,光线l照射到平面镜上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55,∠γ=75°,∠β=______________.11.如图,点D、E、F分别是BC、AD、BE的中点,且S△EFC=1,则S△ABC=______________.12.如图,已知:∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC=______________.13.如图,已知点D、E是BC上的点,且BE=AB,CD=CA,∠DAE=13∠BAC,求∠BAC的度数培优升级·奥赛检测1.在△ABC中,2∠A=3∠B,且∠C-30°=∠A+∠B,则△ABC是()A.锐角三角形B.钝角三角形C.有一个角是30°的直角三角形D.等腰直角三角形B.C.2.已知三角形的三边a、b、c的长都是整数,且a≤b≤c,如果b=7,则这样的三角形共有()A.21个B.28个C.49个D.54个3.在△ABC中,∠A=50°,高BE、CF交于O点,则∠BOC=______________.4.在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为______________.5.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠C=38°,则∠P=______________.6.如图,已知OABC是一个长方形,其中顶点A、B的坐标分别为(0,a)和(9,a).点E在AB上,且AE=13AB.点F在OC上,且OF=13OC,点G在OA上,且使△GEC的面积为16,试求α的值.xyEBGFOCAγβα(第10题图)ⅡⅠ(第11题图)FEDABC(第13题图)DEABC4321(第12题图)DBACGFEPABCD6BACDEF7.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后分别交于P、Q两点,∠P、∠Q的平分线交于M,求证PM⊥QM.MQPABCD第二讲全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS,ASA,AAS,SSS,对于两个直角三角形全等的判定方法,除上述方法外,还有HL法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB∥EF∥DC,∠ABC=90°,AB=CD,那么图中有全等三角形()A.5对B.4对C.3对D.2对【变式题组】1.(武汉2011)下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7AFCEDB2.(黄冈)已知命题:如图,点A、D、B、E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.3.(上海)已知线段AC与BD相交于点O,连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).⑴添加条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC;⑵分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB=DC,AE=DF,CF=FB.求证:AF=DE.【变式题组】1.如图,AD、BE是锐角△ABC的高,相交于点O,若BO=AC,BC=7,CD=2,则AO的长为()A.2B.3C.4D.52.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,AE⊥CE于E,BD⊥AE于D,DE=4cm,CE=2cm,则BD=__________.\AE第1题图ABCDEBCDO第2题图ABCDOFEACEFBD83.(孝感2013)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F.求证:AB=FC.【例3】如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B和顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.⑴当△DEF旋转至如图②位置,点B(E)、C、D在同一直线上时,∠AFD与∠DCA的数量关系是________________;⑵当△DEF继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【变式题组】1.(绍兴2013)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°2.
本文标题:新人教版八上数学培优讲义(15讲)
链接地址:https://www.777doc.com/doc-4522811 .html