您好,欢迎访问三七文档
遗传算法(GA)的肇始“活的有机体是解决问题的专家。它们所表现出来的各种才能足以使最好的计算机程序自惭形秽。这种现象尤其令计算机科学家们感到痛楚。计算机科学家们为了某种算法可能花费数月乃至数年的脑力劳动,而有机体则能通过进化和自然选择这样一种显然并非定向进行的机制获得这种能力。”---JohnHolland遗传算法的思想•Darwin的进化论----“自然选择、适者生存”特定环境的考验•种群中个体的选择•种群中的交叉繁殖•种群中个体的变异上述操作反复执行,个体逐渐优化遗传算法的手工模拟计算示例为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。例:求下述二元函数的最大值:maxf(x1,x2)=x12+x22s.t.x1{1,2,3,4,5,6,7}x2{1,2,3,4,5,6,7}(1)个体编码遗传算法的运算对象是表示个体的符号串,所以必须把变量x1,x2编码为一种符号串。本题中,用无符号二进制整数来表示。因x1,x2为0~7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。例如,基因型X=101110所对应的表现型是:x=[5,6]。个体的表现型x和基因型X之间可通过编码和解码程序相互转换。(2)初始群体的产生遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始群体数据。本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。如:011101,101011,011100,111001(3)适应度汁算遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传机会的大小。本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接利用目标函数值作为个体的适应度。(4)选择运算选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。一般要求适应度较高的个体将有更多的机会遗传到下一代群体中。本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。其具体操作过程是:•先计算出群体中所有个体的适应度的总和fi(i=1.2,…,M);•其次计算出每个个体的相对适应度的大小fi/fi,它即为每个个体被遗传到下一代群体中的概率,•每个概率值组成一个区域,全部概率值之和为1;•最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。0124%24%17%35%1#2#3#4#个体编号初始群体p(0)适值占总数的百分比总和1234011101101011011100111001343425500.240.240.170.351431选择次数选择结果1102011101111001101011111001x1x235533471(5)交叉运算交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某两个个体之间的部分染色体。本例采用单点交叉的方法,其具体操作过程是:•先对群体进行随机配对;•其次随机设置交叉点位置;•最后再相互交换配对染色体之间的部分基因。选择结果011101111001101011111001配对情况交叉点位置个体编号12341-23-41-2:23-4:4交叉结果011001111101101001111011可以看出,其中新产生的个体“111101”、“111011”的适应度较原来两个个体的适应度都要高。(6)变异运算变异运算是对个体的某一个或某一些基因座上的基因值按某一较小的概率进行改变,它也是产生新个体的一种操作方法。本例中,我们采用基本位变异的方法来进行变异运算,其具体操作过程是:•首先确定出各个个体的基因变异位置,下表所示为随机产生的变异点位置,其中的数字表示变异点设置在该基因座处;•然后依照某一概率将变异点的原有基因值取反。对群体P(t)进行一轮选择、交叉、变异运算之后可得到新一代的群体p(t+1)。个体编号1234交叉结果011001111101101001111011变异结果变异点4526011101111111111001111010子代群体p(1)011101111111111001111010从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得到了明显的改进。事实上,这里已经找到了最佳个体“111111”。[注意]需要说明的是,表中有些栏的数据是随机产生的。这里为了更好地说明问题,我们特意选择了一些较好的数值以便能够得到较好的结果,而在实际运算过程中有可能需要一定的循环次数才能达到这个最优结果。个体编号子群体p(1)适值占总数的百分比总和1234011101111111111001111010349850530.140.420.210.232351x1x235777172个体编号初始群体p(0)适值fi(x1,x2)占总数的百分比fi/f1234011101101011011100111001343425500.240.240.170.35x1x235533471fi=143fmax=50f=35.75选择结果011101111001101011111001配对情况交叉点位置1-23-41-2:23-4:4交叉结果011001111101101001111011选择次数1102变异结果变异点4526011101111111111001111010子代群体p(1)适值fi(x1,x2)占总数的百分比fi/f011101111111111001111010349850530.140.420.210.23x1x235777172fi=253fmax=98f=58.75遗传算法的一个实例•求解方程:将方程求解问题转化为生存问题:解一定在[0,10]之间,将区间[0,10]划分成若干个小区间,设想每个小区间为一个生物个体,使下列表达式最小的个体有最好的生存能力,该个体即为解。10010xex)0(x|100|10xex遗传算法的一个实例•如何找到这个最优个体?可通过Darwin的进化论由初始个体经过代代演化,逐渐进化出来。•如何将生物进化的操作转化为计算机可以执行的操作?通过编码表征生物个体,则生物之间的演化转化为编码的变化。步骤一:初始化•个体编码:(假定要求小数点后两位)将[0,10]划分为1024个小区间个体10000000000个体20000000001个体30000000010……个体10241111111111•种群初始化:随机生成m个10位二进制串1024210010•定义适应度函数:•选择(适应度较大的个体)步骤二:选择|100|110xexf为何取倒数?0.10.30.20.40.10.10.30.40.20.60.41.0ABCD随机产生[0,1]之间的数RN,选择个体RN个体ABCD1.00RN4.01.0RN6.04.0RN16.0RN•选中的优势个体进行交叉-----由父个体生成子个体步骤三:交叉相同的两个父个体生成相同的两个子个体•变异操作在个体中随机选择一位,改变该位的值步骤四:变异交叉和变异操作均以一定概率进行•反复执行步骤二、三、四并记录最优个体(适应度最大的个体)•程序结束时,最优个体即为所求解•程序结束的判定根据循环次数根据最大适应度根据种群中相同个体数与总个体数的比值步骤五遗传算法各步骤的评价•选择---优胜劣汰选择操作为种群提供了演进的方向•交叉---优优组合交叉操作的作用在于汇集散布于不同个体间的局部优势模式•变异---寻找新模式变异操作是种群向外扩展的触角(随机)好的变异将保留,坏的淘汰遗传算法的总体评价•优点解决问题的方法具有普适性全局收敛性(依概率收敛)能解决的问题范围很广•不足求得的解为近似的数值解对于经典数学可以解决的问题,效率较低遗传算法的适应度函数求函数的全局极小值取的初始区间,例如:[-10,10]将此区间分为1024个小区间,然后编码若求全局极大值(且为正),可直接取函数值为其适应度值,据此作概率选择;若求全局极小值(且为正),可取函数值的倒数为其适应度值,据此作概率选择。若不全为负,可统一加上一个正数,使为正。)(41))(10sin())80sin(sin())sin(70sin()60sin())50exp(sin(22yxyxyxexyyx,TSP问题的遗传算法求解•步骤一:个体编码及种群初始化•步骤二:适应度选择•步骤三:交叉操作•步骤四:变异操作•步骤五:重复二、三、四步,直至结束令城市(点)数目为N•个体编码取长度为N的数字串,串中数字互不重复,取值范围为[1,N]之间的整数。则每一个数字串代表一个个体,个体中数字出现的位置表征路径中城市出现的顺序。•初始种群令种群中有M个个体,可随机产生M个数字串构成初始种群。例如:将数字串1234…N上的数字进行随机的交换步骤一:初始化•适应度的计算步骤二:适应度选择123451l2l3l4l5lNiijlf11对于个体,适应度为:j被选中作为父个体的概率:Mjjjjffp11jp选择M次重新生成种群•TSP中交叉算子的特点要保证生成的解为有效解从一个父个体中随机选取一段子串A,在另一个父个体中将A中出现的数字去掉形成串B,AB为一个子串步骤三:交叉操作此外还有多种交叉算子•常用的变异操作:随机选取两个相邻位置的数字,交换其顺序。51243(5)51234(5)步骤四:变异操作1234512345交换3,4此外还有多种变异算子•反复执行步骤二、三、四•结束判定循环执行G次(例如G=500)后当最优个体的总路径长度小于预期时步骤五:中国各省会城市的运行结果12345缺陷:相同父个体生成不同的子个体以下是相同个体:12345(1)54321(5)反射操作12345(1)34512(3)旋转操作交叉算子的进一步研究用群论描述所有路径的集合形成一个二面体群A等价解构成一个正规子群BA中陪集的数目为2N12345(1)32154(3)相同父个体交叉34215(3)15234(1)不同子个体,且和父个体不同1234512345123454.1遗传算法简介智能优化计算•简单实例1.产生初始种群2.计算适应度4.1.4遗传算法的基本操作0001100000010111100100000001011001110100101010101011100101101001011011110000000110011101000001010011(8)(5)(2)(10)(7)(12)(5)(19)(10)(14)4.1遗传算法简介智能优化计算•简单实例3.选择4.1.4遗传算法的基本操作个体染色体适应度选择概率累积概率10001100000820101111001530000000101241001110100105101010101076111001011012710010110115811000000011991001110100101000010100111488+5+2+10+7+12+5+19+10+140.08695758+5+2+10+7+12+5+19+10+140.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.1521744.1遗传算法简介智能优化计算•简单实例3.选择4.1.4遗传算法的基本操作个体染色体适应度选择概率累积概率1000110000082010111100153000000010124100111010010510101010107611100101101271001011011581100000001199100111010010100001010011140.0869570.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.1521740.08695
本文标题:遗传算法简单实例
链接地址:https://www.777doc.com/doc-4526931 .html