您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 七年级下册数学三角形全等动点问题
初一数学全等三角形之动点问题专题(B类)一、考点、热点回顾动点型问题是近年来中考的一个热点问题。动态几何问题就是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等,对运动变化过程伴随的数量关系和图形的位置关系等进行探究。动点型问题集几何与代数知识于一体,数形结合,有较强的综合性,题目灵活多变,动中有静,动静结合,能够在运动变化中发展学生空间想象能力,综合分析能力。《等边三角形中的动点问题》是首先从三角形一边上的单动点运动,引起三角形的边与角的变化,判断三角形的形状变化;其次探讨三角形两边上的双动点运动,引起三角形的角与边的变化,再从在三角边上运动到三角形的边的延长线上运动,由三角形的形状探究到三角形的面积的探究等。本设计是以等边三角形为主线,点的运动引起边、角的变化,三角形的形状的判断及三角形面积的大小,抓住图形中“变”和“不变”,以“不变的”来解决“变”,以达到“以静制动”,变“动态问题”为“静态问题”来解。对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用。本节课的教学设计,注意到了问题的层次性,由浅入深,由简单到复杂,从给定结论到结论开放,以等边三角形为载体,动点在三角形的边、延长线上运动等问题串的形式,层层递进,环环相扣,让不同的学生都有收收获,有所成功,还体现出了分类讨论、等积变换、三角函数等思想方法。二、典型例题1、单动点问题引例:已知,如图△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.设点P的运动时间为(s),那么t=____时,△PBC是直角三角形?2、双动点问题引例:已知,如图△ABC是边长3cm的等边三角形.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么t为何值时,△PBQ是直角三角形?巩固练习,拓展思维已知,如图△ABC是边长3cm的等边三角形.动点P从点A出发,沿AB向点B运动,动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么当t为何值时,△DCQ是等腰三角形?BCPACQBPAQDBCPAABCDEF变式练习:1、已知,如图△ABC是边长3cm的等边三角形.动点P从点A出发,沿AB向点B运动,动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),连接PC.请探究:在点P、Q的运动过程中△PCD和△QCD的面积是否相等?变式练习:2、已知等边三角形△ABC,(1)动点P从点A出发,沿线段AB向点B运动,动点Q从点B出发,沿线段BC向点C运动,连接CP、AQ交于M,如果动点P、Q都以相同的速度同时出发,则∠AMP=___度。(2)若动点P、Q继续运动,分别沿射线AB、BC方向运动,.∠AMP=60°的结论还成立吗?二、实战训练1、如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF=.QDBCPAMABCQPMABCPQ2、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF(2)试证明△DFE是等腰直角三角形3、如图,在等边ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问(1)在爬行过程中,CD和BE始终相等吗?(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中CQE的大小条件不变,求证:60CQE(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确4、如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.图1图2图3图85、如图,已知ABC△中,10ABAC厘米,8BC厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?6、(2009年本溪)在ABC△中,ABAC,点D是直线BC上一点(不与BC、重合),以AD为一边在AD的右侧..作ADE△,使ADAEDAEBAC,,连接CE.(1)如图1,当点D在线段BC上,如果90BAC°,则BCE度;(2)设BAC,BCE.①如图2,当点D在线段BC上移动,则,之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.AQCDBP7、如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.AEEACCDDBB图1图2AA备用图BCBC备用图8、已知,如图①所示,在ABC△和ADE△中,ABAC,ADAE,BACDAE,且点BAD,,在一条直线上,连接BECDMN,,,分别为BECD,的中点.(1)求证:①BECD;②ANAM;(2)在图①的基础上,将ADE△绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.9、直线CD经过BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且CENDABM图①CAEMBDN图②BECCFA.(1)若直线CD经过BCA的内部,且E、F在射线CD上,请解决下面两个问题:①如图1,若90,90BCA,则EFBEAF(填“”,“”或“”号);②如图2,若0180BCA,若使①中的结论仍然成立,则与BCA应满足的关系是;(2)如图3,若直线CD经过BCA的外部,BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.10、如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使E点落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.ABCEFDDABCEFADFCEB图1图2图3附加题之等腰三角形(中考重难点之一)考点1:等腰三角形性质的应用1.如图,ABC中,ABAC,90BAC,D是BC中点,EDFD,ED与AB交于E,FD与AC交于F.求证:BEAF,AECF.ABCDEF2.两个全等的含30,60角的三角板ADE和三角板ABC,如图所示放置,,,EAC三点在一条直线上,连结BD,取BD的中点M,连结,MEMC.试判断EMC的形状,并说明理由.MEDCBA考点2:等腰直角三角形(45度的联想)1.如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明2.在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中点,DG⊥AC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与CF,过点F作FH⊥FC,交直线AB于点H.①求证:DG=DC②判断FH与FC的数量关系并加以证明.(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变.(本小题直接写出结论,不必证明)同类变式:已知:△ABC为等边三角形,M是BC延长线上一点,直角三角尺的一条直角边ADBCGE图2GHFEDCBA图1经过点A,且60º角的顶点E在BC上滑动,(点E不与点B、C重合),斜边与∠ACM的平分线CF交于点F(1)如图(1)当点E在BC边得中点位置时○1猜想AE与EF满足的数量关系是.○2连结点E与AB边得中点N,猜想BE和CF满足的数量关系是.○3请证明你的上述猜想;(2)如图(2)当点E在BC边得任意位置时,AE和EF有怎样的数量关系,并说明你的理由?四、课后反馈教学进度:图(1)NFMCBAE图(2)FMCBAE学生掌握情况:存在问题及改进措施:
本文标题:七年级下册数学三角形全等动点问题
链接地址:https://www.777doc.com/doc-4542722 .html