您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > (新课程)高中数学《1.1.1变化率与导数》课件2 新人教A版选修2-2
1.1变化率与导数一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等。导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.姚明身高变化曲线图(部分)2.262.12●●●●●●年龄身高47101316●19220.81.61●●●●●●●气球膨胀率问题1,):(:,334rrVdmrLV之间的函数关系是位单与半径单位气球的体积我们知道.,343VVrVr那么的函数表示为体积如果把半径在吹气球的过程中,可发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?,.,cmrrLV6200110气球半径增加了时增加到从当空气容积./.Ldmrr6200101气球的平均膨胀率为,.,,dmrrLL1601221增加了气球半径时增加到当空气容量从类似地./.Ldmrr1601212气球的平均膨胀率为.,,胀率逐渐变小了它的平均膨随着气球体积逐渐变大可以看出?,均膨胀率是多少气球的平时增加到当空气的容量从思考21VV2121rVrVrVVV高台跳水问题2...::,,1056942ttthstmh存在函数关系单位与起跳后的时间单位面的高度运动员相对于水在高台跳水运动中人们发现那么述其运动状态描时间内的平均速度如果我们用运动员某段,v;/...,.smhhvt054050050500这段时间里在./.,smhhvt28121221这段时间里在播放暂停停止2121hththvttt65049,:1?2?t探究计算运动员在这段时间里的平均速度并思考下面的问题运动员在这段时间里是静止的吗你认为用平均速度描述运动员运动状态有什么问题吗探究过程:如图是函数h(t)=-4.9t2+6.5t+10的图像,结合图形可知,,所以,)0()4965(hh)/(004965)0()4965(mshhv虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.49650t)/(0msthO65496598t,,.,,1212211212xxxxxxchangeofrateaveragexxxfxxxfxfxf即表示用习惯上的到从数我们把这个式子称为函示表式子那么问题中变化率可用表示函数关系用如果上述两个问题中的平均变化率.,相乘与而不是是一个整体符号xx11221,;,.xxxxxyfxfx可把看作是相对于的一个增量可用代替类似地,.yx于是平均变化率可表示为?,1.1.11212表示什么变化率平均图的图象观察函数思考xxxfxfxyxfOxy1xf2xfxfy12xfxf12xx1x2x111.图直线AB的斜率AB例(1)计算函数f(x)=2x+1在区间[–3,–1]上的平均变化率;(2)求函数f(x)=x2+1的平均变化率。(1)解:△y=f(-1)-f(-3)=4△x=-1-(-3)=2422yx(2)解:△y=f(x+△x)-f(x)=2△x·x+(△x)222()2yxxxxxxx练习1.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,-2+Δy),则Δy/Δx=()A.3B.3Δx-(Δx)2C.3-(Δx)2D.3-ΔxD3.求y=x2在x=x0附近的平均变化率.2.t2质点运动规律s=t+3,则在时间(3,3+t)中相应的平均速度为()9A.6+tB.6+t+C.3+tD.9+tA小结:•1.函数的平均变化率2.求函数的平均变化率的步骤:(1)求函数的增量:Δy=f(x2)-f(x1);(2)计算平均变化率:1212)()(yxxxfxfx1212)()(yxxxfxfx
本文标题:(新课程)高中数学《1.1.1变化率与导数》课件2 新人教A版选修2-2
链接地址:https://www.777doc.com/doc-4552663 .html