您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 泰勒公式及方向导数梯度习题
泰勒公式及方向导数、梯度习题1.将下列函数在指定点展成泰勒公式(1)xyzzyxzyxf3),,(333,在点(1,1,1);(2))1ln(),(yxyxf,在点(0,0)。2.设1|||,|0yx,试给出yx11arctan的二次近似多项式。3.书上习题835.4.求函数xyzzxyu32在点(1,1,2)处沿方向l(其方向角分别为60°,45°,60°)的方向导数。5.设函数222222byaxczu,求它在点(a,b,c)处的梯度。1.将下列函数在指定点展成泰勒公式(1)xyzzyxzyxf3),,(333,在点(1,1,1);0)1,1,1(f,0|)33(|)1,1,1(2)1,1,1(yzxfx,0|)33(|)1,1,1(2)1,1,1(xzyxfy,0|)33(|)1,1,1(2)1,1,1(xyzfz,6|6|)1,1,1()1,1,1(xfxx,6|6|)1,1,1()1,1,1(yfyy6|6|)1,1,1()1,1,1(zfzz3|)3(|)1,1,1()1,1,1(zfxy3|)3(|)1,1,1()1,1,1(yfxz3|)3(|)1,1,1()1,1,1(xfyz6|)1,1,1(33xf,6|)1,1,1(33yf,6|)1,1,1(33zf,3|)1,1,1(3zyxf2323yxfyxf2323zxfzxf02323zyfzyf∴222)1(3)1(3)1(3),,(zyxzyxf)1)(1(3)1)(1(3)1)(1(3zyzxyx)1)(1)(1(3)1()1()1(333zyxzyx(2))1ln(),(yxyxf,在点(0,0)。0)0,0(f,1|11|)0,0()0,0(yxfx,1|11|)0,0()0,0(yxfy1|)1(1|)0,0(2)0,0(yxfxx1|)1(1|)0,0(2)0,0(yxfyy1|)1(1|)0,0(2)0,0(yxfxy)0,0(1)0,0()(|)1()!1()1(|jijijiyxyxjifji)!1()1(1jiji∴)1ln(),(yxyxf322)(31)2(21yxyxyxyx11)1)(1()()1()()1(nnnnnyxnyxyxn.2.设1|||,|0yx,试给出yx11arctan的二次近似多项式。4)0,0(f,21|)1()1(1|)0,0(22)0,0(xyyfx,21|)1()1(1|)0,0(22)0,0(xyxfy21|))1()1(()1)(1)(2(|)0,0(222)0,0(yxxyfxx21|))1()1(()1)(1(2|)0,0(222)0,0(yxxyfyy0|])1()1[()1()1(|)0,0(22222)0,0(yxxyfxy∴)2121(!21)(21411arctan22yxyxyx)(41)(21422xyyx.3.书上习题835.证明:若函数),(yxf在点(0,0)邻域内存在一阶与二阶偏导数,且这些偏导数在(0,0)连续,则21210)0,0(),(2),2(lim)0,0(hfehfehffhhhxx。(应用二元函数的泰勒公式,整理之后取极限)运用麦克劳林公式将函数),2(21hehf,),(1hehf在点(0,0)展开:)10(,2),2(),2(214),2(21)0,0(2)0,0()0,0(),2(121211112111221112121hhxyhhyyhxxhyxhheehfeehfhehfefhffehf)10(,),(),(21),(21)0,0()0,0()0,0(),(211222122212211hhxyhhyyhxxhyxhheehfeehfhehfefhffehf∴21210)0,0(),(2),2(lim)0,0(hfehfehffhhhxx),2(22)0,0([lim211121210hxxhhyhehfheefheehfehfhhxyhxx212111122),2(2),(22121111122),2(21),(2heehfheehfhhyyhhxy22122),(heehfhhyy)0,0()0,0()0,0(2xxxxxxfff。4.求函数xyzzxyu32在点(1,1,2)处沿方向l(其方向角分别为60°,45°,60°)的方向导数。1)2,1,1(xf,0)2,1,1(yf,11)2,1,1(zf,53cos114cos03cos1|)2,1,1(lu。5.设函数222222byaxczu,求它在点(a,b,c)处的梯度。22axxu,22byyu,22czzu,}2,2,2{|),,(cbagraducba。
本文标题:泰勒公式及方向导数梯度习题
链接地址:https://www.777doc.com/doc-4560233 .html