您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学数学典型应用题类型解题思路
小学数学应用题复习小学数学应用题是教学的重点,又是教学的难点。每次毕业考试所占比例较大,因此在总复习中它至关重要。应用题的系统复习有助于学生理解概念,掌握数量关系,培养和提高分析问题、解决问题的能力。现对应用题的复习教学谈谈我自己的看法:小学的应用题主要分为以下两种:1、简单应用题:(1)简单应用题的含义:只含有一种基本数量关系,或用一步运算解答的应用题.2、复合应用题:(1)复合应用题:有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题.(2)主要类型:(1)含有三个已知条件的两步计算的应用题。(2)含有两个已知条件的两步计算的应用题。(3)解答连乘连除应用题。(4)解答三步计算的应用题。(5)解答小数计算的应用题:3.复合应用题中典型应用题:题型名称含义数量关系解题思路和方法例题归一问题在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。总量÷份数=1份数量,1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数。先求出单一量,以单一量为标准,求出所要求的数量。例:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。归总问题解题时,先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量先求出总数量,再根据题意得出所求的数量。例:服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。和差已知两个数量的和与差,求这两个数量大数=(和+差)÷2简单的题目可以直例:甲乙两班共有学生98人,甲班比乙班多6人,求问题各是多少,这类应用题叫和差问题。小数=(和-差)÷2接套用公式;复杂的题目变通后再用公式两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。和倍问题已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数简单的题目直接利用公式,复杂的题目变通后利用公式。例:果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。差倍问题已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数简单的题目直接利用公式,复杂的题目变通后利用公式。例:果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?解(1)杏树有多少棵?124÷(3-1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。倍比问题有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。出要求的数。总量÷一个数量=倍数另一个数量×倍数=另一总量先求出倍数,再用倍比关系求例:100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍?3700÷100=37(倍)(2)可以榨油多少千克?40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。相遇问题两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间简单的题目可直接利用公式,复杂的题目变通后再利用公式。例:南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解:392÷(28+21)=8(小时)答:经过8小时两船相遇。追及问题两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间简单的题目直接利用公式,复杂的题目变通后利用公式。例:好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。植树问题按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)先弄清楚植树问题的类型,然后可以利用公式。例:一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。年龄这类问题是根据题目的内容而得名,它年龄问题往往与和差、和倍、可以利用“差倍问例1爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄问题的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。题”的解题思路和方法是亮亮的几倍?明年呢?解35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。列车问题这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)大多数情况可以直接利用数量关系的公式。例:一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?解火车3分钟所行的路程,就是桥长与火车车身长度的和。(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)列成综合算式900×3-2400=300(米)答:这列火车长300米。时钟问题就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。分针的速度是时针的12倍,二者的速度差为11/12。通常按追及问题来对待,也可以按差倍问题来计算。变通为“追及问题”后可以直接利用公式。例:从时针指向4点开始,再经过多少分钟时针正好与分针重合?解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为20÷(1-1/12)≈22(分)答:再经过22分钟时针正好与分针重合。工工程问题主要研究关键是把工作变通后可例1一项工程,甲队单独程问题工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷(甲工作效率+乙工作效率)以利用上述数量关系的公式。做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?由于没有给出这项工程的具体数量,因此,把此项工程看作单位1。甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。即:1÷(1/10+1/15)=1÷1/6=6(天)答:两队合做需要6天完成。正反比例问题两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。正反比例问题与前面讲过的倍比问题基本类似。例:修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?解由条件知,公路总长不变。原已修长度∶总长度=1∶(1+3)=1∶4=3∶12现已修长度∶总长度=1∶(1+2)=1∶3=4∶12比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。公路总长为300÷(4-3)×12=3600(米)答:这条公路总长3600米。按比例分配问题所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。之几是多少的计算方法,分别求出各部分量的值。从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。例:学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?解总份数为47+48+45=140一班植树560×47/140=188(棵)二班植树560×48/140=192(棵)三班植树560×45/140=180(棵)答:一、二、三班分别植树188棵、192棵、180棵。百分数问题百分数表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约掌握“百分数”、“标准量”“比较量”三者之间的数量关系:一般有三种基本类型:(1)求一个数是另增长率=增长数÷原来基数×100%出勤率=实际出勤人数÷应出勤人数×100%出勤率=实际出勤天数÷分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。在实际中和常用到“百分点”这个概念,一个百分点就是1%,
本文标题:小学数学典型应用题类型解题思路
链接地址:https://www.777doc.com/doc-4575731 .html