您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学必修4全套学案
第一章三角函数1.1任意角和弧度制►1.1.1任意角课前自主学习KEQIANZIZHUXUEXI[基础自学]一、角的概念1.角的概念(1)角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.(2)角的表示顶点:用O表示;始边:用OA表示,用语言可表示为角的始边;终边:用OB表示,用语言可表示为角的终边.2.角的分类按旋转方向可将角分为如下三类:类型定义图示正角按照逆时针旋转而成的角负角按照顺时针旋转而成的角零角当射线没有旋转时,我们也把它看成一个角,叫做零角二、象限角1.象限角:若角的顶点在原点,角的始边与x轴非负半轴重合,则角的终边在第几象限,就称这个角是第几象限角.2.轴线角:若角的终边在坐标轴上,则这个角不属于任何象限.三、终边相同的角设α表示任意角,所有与角α终边相同的角,包括α本身构成一个集合,这个集合可记为{β|β=α+k·360°,k∈Z}.[自我小测]1.判断(正确的打“√”,错误的打“×”)(1)研究终边相同的角的前提条件是角的顶点在坐标原点.()(2)锐角是第一象限的角,但第一象限的角不一定是锐角.()(3)象限角与终边落在坐标轴上的角表示形式是唯一的.()提示:(1)×(2)√(3)×2.做一做(1)下列各组角中,终边不相同的是()A.60°与-300°B.230°与950°C.1050°与-300°D.-1000°与80°答案C(2)将-885°化为α+k·360°(0°≤α360°,k∈Z)的形式是________.答案195°+(-3)×360°课堂合作探究KETANGHEZUOTANJIU1终边相同的角之间有什么关系?提示:与α终边相同的角,可表示为β=k·360°+α(k∈Z),即两角相差360°的整数倍.2如何表示终边在坐标轴上的角和象限角?提示:终边在x轴非负半轴上的角:α=k·360°(k∈Z);终边在y轴上的角:α=90°+k·180°(k∈Z);第二象限角:90°+k·360°α180°+k·360°(k∈Z).题型一正确理解角的概念例1下列结论:①锐角都是第一象限角;②第一象限角一定不是负角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中正确的序号为________(把正确结论的序号都写上).[解析]①锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以①正确;②-330°角是第一象限角,但它是负角,所以②不正确;③480°角是第二象限角,但它不是钝角,所以③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.[答案]①角的概念的理解正确解答角的概念问题,关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.【跟踪训练1】(1)经过2个小时,钟表上的时针旋转了()A.60°B.-60°C.30°D.-30°(2)如图∠α=__________,∠β=__________.答案(1)B(2)-150°210°解析(1)钟表的时针旋转一周是-360°,其中每小时旋转-360°12=-30°,所以经过2个小时应旋转-60°.题型二终边相同的角的表示及象限角例2已知α=-1910°.(1)把α写成β+k·360°(k∈Z,0°≤β360°)的形式,指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°θ≤0°.[解](1)∵-1910°÷360°=-6余250°,∴-1910°=-6×360°+250°.相应β=250°,从而α=-6×360°+250°是第三象限的角.(2)令θ=250°+k·360°(k∈Z),取k=-1,-2就得到适合-720°θ≤0°的角:250°-360°=-110°,250°-720°=-470°.∴θ=-110°或θ=-470°.[变式探究]与-1560°角终边相同的角的集合中,最小正角是________,最大负角是________.答案240°-120°解析与-1560°角终边相同的角的集合为{α|α=k·360°+240°,k∈Z},所以最小正角为240°,最大负角为-120°.怎样表示终边相同的角及象限角(1)已知终边所处的位置,写角的集合时,可先写出0°~360°范围内的角,然后再加k·360°(k∈Z)组成集合即可.(2)象限角的判定有两种方法:一是根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角.二是根据终边相同的角的概念.把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.【跟踪训练2】在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限的角.(1)-120°;(2)640°;(3)-950°12′.解(1)-120°=-360°+240°,∴在0°到360°范围内,与-120°终边相同的角是240°角,它是第三象限的角.(2)640°=360°+280°,∴在0°到360°范围内与640°终边相同的角是280°角,它是第四象限的角.(3)-950°12′=-3×360°+129°48′,∴在0°到360°范围内与-950°12′终边相同的角是129°48′,它是第二象限的角.题型三区域角的表示例3写出终边落在阴影部分的角的集合.[解]设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤αk·360°+105°,k∈Z}.②{α|k·360°+210°≤αk·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤αk·360°+105°,k∈Z}∪{α|k·360°+210°≤αk·360°+285°,k∈Z}={α|2k·180°+30°≤α2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α2k·180°+105°或(2k+1)·180°+30°≤α(2k+1)180°+105°,k∈Z}={α|k·180°+30°≤αk·180°+105°,k∈Z}.[变式探究]将例3改为下图,写出角的终边在图中阴影区域的角的集合(包括边界).解(1){α|45°+k·180°≤α≤90°+k·180°,k∈Z}.(2){α|-150°+k·360°≤α≤150°+k·360°,k∈Z}.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角.(3)用不等式表示区域内的角,组成集合.【跟踪训练3】写出终边在如下图所示阴影部分内的角α的取值范围.解(1)与45°角终边相同的角的集合为{α|α=45°+k·360°,k∈Z},与30°-180°=-150°角终边相同的角的集合为{α|α=-150°+k·360°,k∈Z},因此终边在阴影部分内的角α的取值范围为{α|-150°+k·360°α≤45°+k·360°,k∈Z}.(2)方法同(1),可得终边在阴影部分内的角α的取值范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.[规律小结]1.角的概念的理解(1)弄清角的始边与终边.(2)结合图形明确这个角从始边到终边转过了多少度.(3)注意逆时针旋转与顺时针旋转的区别.2.研究象限角时应注意的问题(1)前提条件:角的顶点与原点重合,角的始边与x轴的非负半轴重合;(2)并不是任何角都是象限角,如终边落在坐标轴上的角叫轴线角,轴线角的表示如下表:终边所在的位置角的集合x轴非负半轴{α|α=k·360°,k∈Z}x轴非正半轴{α|α=k·360°+180°,k∈Z}y轴非负半轴{α|α=k·360°+90°,k∈Z}y轴非正半轴{α|α=k·360°+270°,k∈Z}3.表示与α终边相同的角时应注意的问题(1)k是整数,这个条件不能漏掉;(2)α是任意角;(3)k·360°与α之间是“+”号,如k·360°-30°应看成k·360°+(-30°)(k∈Z);(4)终边相同的角不一定相等,但相等的角终边一定相同.[走出误区]易错点⊳分角所在象限及范围的确定的误区[典例]若α是第三象限的角,则α3是()A.第一象限的角B.第三象限的角C.第四象限的角D.第一象限或第三象限或第四象限的角[错解档案]因为α是第三象限的角,所以取α=210°,得到α3=70°,是第一象限的角,故选A.[误区警示]第三象限的角α有无数个,用α=210°得到α3=70°而选择答案A,犯了以偏概全的错误.[规范解答]因为α是第三象限的角,所以k·360°+180°αk·360°+270°(k∈Z),则k·120°+60°α3k·120°+90°(k∈Z),取k=0,得到α3可在第一象限;取k=1,得到α3可在第三象限;取k=2,得到α3可在第四象限.故选D.矫正训练若α为第二象限的角,则α2为第几象限角?解若α为第二象限角,则有k·360°+90°αk·360°+180°,k∈Z则k·180°+45°α2k·180°+90°,k∈Z则k=2n(n∈Z)时,α2为第一象限角;k=2n+1(n∈Z),α2为第三象限角.故α2为第一或第三象限角.随堂消化吸收SUITANGXIAOHUAXISHOU1.[2016·吉林实验高一期中]下列叙述正确的是()A.三角形的内角是第一象限角或第二象限角B.钝角是第二象限角C.第二象限角比第一象限角大D.不相等的角终边一定不同答案B解析三角形的内角是第一象限角、第二象限角或在y轴非负半轴上的角,故A错误;钝角是第二象限角,B正确;象限角不能比较大小,故C错误;不相等的角终边也可能相同,如40°和400°,故D错误.2.[2016·山东枣庄模拟]若α是第四象限角,则180°+α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案B解析因为α与180°+α的终边关于点(0,0)对称,所以角180°+α的终边在第二象限.3.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.答案-5-60解析将钟表拨快10分钟,则时针按顺时针方向转了10×360°12×60=5°,所转成的角度是-5°;分针按顺时针方向转了10×360°60=60°,所转成的角度是-60°.4.若α为锐角,则-α+k·360°(k∈Z)在第________象限.答案四解析由于0°α90°,所以-90°-α0°,所以-α是第四象限角,从而-α+k·360°(k∈Z)在第四象限.5.[2016·大连高一检测]写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤α≤720°的元素α写出来:(1)60°;(2)-21°.解第一步:利用终边相同的角的集合公式写出:(1)S={α|α=60°+k·360°,k∈Z};(2)S={α|α=-21°+k·360°,k∈Z}.第二步:在第一步的基础上,利用约束条件对其中的k值分别采用赋值法求出元素α;(1)-300°,60°,420°;(2)-21°,339°,699°.课后课时精练KEHOUKESHIJINGLIAN时间:25分钟满分:60分一、选择题(每小题5分,共25分)1.已知α=-130°,则α的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限答案C解析∵-130°=-360°+230°,而230°是第三象限角,∴α的终边落在第三象限.2.已知角α的终边落在直线y=x上,则角α的集合S=()A.{α|α=k·360°+45°,k∈Z}B.{α|α=k·90°+45°,k∈Z}C.{α|α=k·360°+225°,k∈Z}D.{α|α=k·180°+45°,k∈Z}答案D解析本题考查终边在特殊直线上的角以及分类讨论的数学思想.由于角α的终边落在直线y=x上,故角α在0°~36
本文标题:高中数学必修4全套学案
链接地址:https://www.777doc.com/doc-4577029 .html