您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 股票报告 > SPSS 数据挖掘在电信行业的应用
前言随着电信业务的发展和体制改革地不断深化,国内电信行业内部各大运营商之间的竞争日趋激烈,这一趋势在国内移动通信业内表现的尤为突出。移动通信运营商为了获取更多的客户资源和占有更大的市场份额往往采取“简单”的价格竞争和“此起彼伏”的广告宣传战,其弊端显而易见。这就要求运营商要采取以客户为中心的策略,根据客户的实际需求提供多样化、层次化、个性化的服务解决方案。因此,客户关系管理(CRM)成了电信运营商增加收入和利润,提高客户满意度、忠诚度的有效工具。在客户关系管理的流程中,为了准确、及时地进行经营决策,必须充分获取并利用相关的数据信息对决策过程进行辅助支持。近几年迅速发展起来的数据挖掘技术就是实现这一目标的重要手段。从电信业务层面来讲,电信业务已从单纯的提供市话和长话服务演变为提供综合电信服务,如宽带、移动电话、语音、传真、图像、电子邮件、计算机和Web数据传输,以及其他数据通信服务。电信、计算机网络、因特网和各种其他方式的通信和计算机的融合是目前的大势所趋。而且随着许多国家对电信业的开放和新兴计算与通信技术的发展,电信市场正在迅速扩张并越发竞争激烈。因此,为了提高企业竞争力利用数据挖掘技术来挖掘现有电信业务能力,提高商业效率具有重要意义。数据挖掘的概念数据挖掘是根据企业的既定业务目标和存在的问题,对大量的业务数据进行探索,揭示其中隐藏的规律,并将其模型化,指导并应用于企业的实际经营。数据挖掘是建立在数据仓库基础上的高层应用,但数据挖掘跟数据仓库的其它一些应用如OLAP分析、预定义报表和即席查询等有很大的区别。后三者通常是用户根据已知的情况对所关心的业务指标进行分析;而前者则是在业务问题和目标明确但考察的问题不清楚时,对数据进行探索,揭示隐藏其中的规律性,进而将其模型化。电信运营商拥有许多成熟的数据库应用系统,如网管系统、财务系统、计费账务系统、112障碍管理系统、缴费销账系统等,并产生了大量的业务处理数据。如果针对客户关系管理相关决策分析的需求,对这些数据进行重组整合,就能充分利用这些宝贵的数据,体现信息的真正价值。国内数据挖掘应用中存在的问题数据质量和完备性国内电信运营商现有的、面向事务的数据在质量、完整性和一致性上存在许多问题,必须投入大量的精力去进行数据的抽取、净化和处理。此外,业务问题的相关数据有时难以全面收集。例如客户信用是客户价值评估中的关键因素,但由于国内未建立完善的信用体系,无法根据现有客户数据建立优质的信用评价模型,从而导致客户价值模型有效性的降低。相应的人员素质在数据挖掘应用过程的多个环节中,人的主观辨识和控制是应用成败的关键,这就对系统使用人员提出了很高的要求。如果没有具备相应素质的使用和维护人员,必将导致分析系统与现实脱钩,无法达到预期效果。应用周期数据挖掘存在一个较长的应用周期。技术本身不能给使用者解决任何问题,只能从数据中把一些潜在的情况呈现到使用者面前,由使用者采取相应措施。数据挖掘应用的有效方法是:从一个较小的、关键的问题出发,建立起相对有效的模型,并通过应用实践不断检验和完善模型,逐步替使用者解决问题。电信数据挖掘项目实施的意见与建议数据挖掘理解上的误区:a)数据挖掘系统将会直接告诉你有关商业问题的答案;b)数据挖掘系统将在工作流程中替代专业业务管理人员的角色;c)数据挖掘系统的建设过程中无视内部的知识和专家经验;d)数据挖掘系统是理论性的、以研究学习为导向的方法。数据挖掘项目的建议:结合项目的投资确定数据挖掘项目的目标和回报周期,保证项目的可实施性。a)数据挖掘项目整个实施流程的管理和控制是非常重要的;b)数据挖掘项目需要和用户的专业业务人员紧密配合,共同寻找答案;c)培训业务人员,传递产品技能,提供挖掘分析的技术支持,让业务专家而不是技术人员成为项目的主导者;d)需要提供外部观点和一般经验,同时与内部特色相结合;e)确保实际的,以结果为导向的项目原则。本手册将从客户流失、客户细分、客户满意度和营销响应四个大方面,使用Clementine具体讲述数据挖掘在电信行业的具体应用。2.挖掘主题数据挖掘技术在电信行业客户关系管理的主要应用领域如下:客户流失随电信市场竞争的发展,客户选择电信产品及电信企业的余地越来越大,电信企业之间对客户的争夺也越来越激烈。面对日益激烈的市场竞争环境,电信企业传统的、被动式服务体系已无法满足客户需要,应对对手挑战。为了留住昀有价值的客户,您需要开展有效的保留活动。SPSS作为全球著名的分析软件提供商,对电信企业的客户流失问题十分关注,并有多年的研究经验。SPSS核心产品之一Clementine的CRISP-DM标准可以帮助电信行业用户规范数据挖掘流程减少客户流失。营销响应为了发展新客户和推广新产品,企业通常会针对潜在客户推出各种直接营销活动。然而,如果目标客户的选择不明确,营销活动往往花费巨大而取得的实际效益不佳。有效的促销活动,不在于涉及客户的数量多少,而在于针对的都是具有高响应概率的目标人群。这不仅可以提升客户的满意度,增强客户对公司的忠诚度,而且可以降低客户获取费用,增加营销活动投资回报率,直接带来企业效益的增加。SPSS采用探索性数据挖掘方法,如建立营销响应模型,通过对客户及其行为的各种属性进行分析,预测哪些客户会对某种产品或服务的营销活动进行响应,帮助企业在合适的时间,通过合适的渠道,以一种合适的接触频率,对合适的客户开展活动,从而提高营销活动的响应率和投资回报率。市场细分市场细分就是指按照消费者欲望与需求把一个总体市场划分成若干具有共同特征的子市场的过程。分属于同一细分市场的消费者,他们的需要和欲望极为相似;分属于不同细分市场的消费者对同一产品的需要和欲望存在着明显的差别。市场细分的目的就是从各个细分的消费者群当中,辨认和确定目标市场,然后针对客户的特点采取独特的产品或市场营销战略,以求获得昀佳收益。SPSS的客户细分帮助您实现客户价值的昀大化和风险昀小化。客户细分也是进行深入分析的基础。利用聚类和分类等技术,SPSS预测分析技术能够发现特定群体客户的行为规律,确定客户价值,从而进一步预测客户消费行为,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。满意度分析客户满意是指客户通过对一个产品或服务的可感知效果或结果与其期望值相比较后,所形成的愉悦或失望的感觉状态。客户满意度就是对客户满意水平的量化。客户的高度满意和愉悦创造了一种对产品品牌在情绪上的共鸣,而不仅仅是一种理性偏好,正是这种由于满意而产生的共鸣创造了客户对产品品牌的高度忠诚。客户满意度研究能帮助企业把其有限的资源集中到客户昀看重的特性方面,从而达到建立和提升客户忠诚并保留客户的效果。SPSS客户满意度研究应用解决方案分析客户与市场、体验客户感受,提升客户满意度运用分析模型,通过综合分析潜在客户、现有客户、员工及合作伙伴等多个群体,了解客户满意度,对满意度优劣因素进行规类,获得满意度因果关系,构建科学的满意度评价指标体系,切实提高客户满意度水平。销售提升解决方案电信公司希望可以向现有客户销售新的产品和服务,提高现金收入并提升每个客户的收益率。例如,移动公司能够利用数据挖掘建立使用GPRS服务的客户个人属性和行为特征概述来理解客户行为,进而利用这一模型来预测针对这些客户还可以制定或推荐什么样的产品或者服务组合,然后我们就可以成功地对这些客户设定有效的销售战略。SPSS功能强大的分析产品能够帮助电信用户发现现有和潜在的客户需求,基于对客户的行为描述来制定提供有针对性的策略来获得昀佳的新客户。利用购买行为模型向现有客户推荐产品和服务。例如,可以根据新用户的行为特征档案来制定适合提供他们的服务,吸引更多的新客户。另外,分析客户的购买偏好可以找到适合提供给现有客户的产品和服务。客户市场推广分析客户市场推广分析利用数据挖掘技术实现新的推广策略的仿真,根据数据挖掘模型进行模拟计费和模拟出账,其仿真结果可以揭示新策略中存在的问题,并进行相应的调整优化,以达到市场推广活动的收益昀大化。在电信行业中,优惠是市场营销中十分重要的一部分,优惠策略的不恰当,常常会得到适得其反的市场效果。利用SPSS可以通过已建立的客户行为模型,仿真客户对优惠策略的反应,从而预测优惠策略实施的效果。通过对优惠策略的仿真,可以预测优惠策略的成功与否,从而进行相应的调整和优化。客户欠费分析和动态防欺诈随着国内电信市场的不断扩大,中国电信业中的欺诈现象也越来越严重。目前,国内电信商在应对恶意欠费上,基本还处于一种事后的、被动的、依赖人力的阶段。如果利用数据挖掘和统计分析技术,对欠费行为进行事前预测,在恶意欠费发生前就采取防范措施,就可以大幅减少欠费行为给运营商带来的巨额损失。在对客户欠费进行准确定义之后,SPSS系列产品和领先技术能够帮助您预测各客户可能欠费额、可能欠费级别并采取相应对策。首先,利用数据描述技术,可以对已知的欺诈性客户和非欺诈性客户进行有关的数据分析,发现可能影响客户欠费的因素。然后,我们可以根据对以上因素的分析和统计,构建预测模型,并应用到当前客户数据库中,利用上述预测结果,适时地对大客户进行重点跟踪,并在必要时采取措施,以减少损失。简化管理呼叫中心的运营管理被人们提到前所未有的高度,因为一个中心即使建得很好,技术也很先进,但如果管理不好,优势仍然发挥不出来。然而,管理对于很多呼叫中心来说,却是很难过的门槛。在呼叫中心中,话务量是个重要的指标,企业要根据话务量的大小,以及业务种类的不同,安排座席人员的数量和排班,但话务量是个变化的指标,以往比较难以预测。使用SPSS数据挖掘可以帮助简化管理。使用时间序列分析可以对话务量的情况进行一定程度的预测,就可以更合理地安排座席人员的数量,从而降低企业的运营成本。另外,对业务进行相关性分析,分析出哪几种业务具有比较强的关联性。这样,在安排座席人员时,就可以将相关业务的人员进行一定程度的合并,减少人员数量,降低呼叫中心的经营成本。竞争对手分析成熟的市场必然是一个竞争比较充分的市场。不同运营商客户之间的互联互通是昀基本的前提,因此通过对客户与竞争对手客户之间通话的行为分析,可以建立有关竞争对手经营和客户服务的模型,比如竞争对手客户发展模型,通过对这些模型的使用,可以制定有效的市场应对策略。SPSS可以由相互通话的记录中,掌握对手的客户量、业务量、客户增长情况等。推断对手的大客户,掌握其行为特征。预测对手下一步的市场策略,未雨绸缪,先发制人。准确评估己方市场策略对对手的影响。准确评估对方市场策略的效果及对己方的影响。分析其他竞争对手之间的竞争策略,评估其对各方影响。3.解决方案3.1客户流失随着电信体制的改革和不断深化,国内电信行业内部各大运营商之间的竞争日趋激烈。电信运营商为了获取更多的客户资源和占有更大的市场份额,往往采取名目繁多的促销活动和层出不穷的广告宣传来吸引新客户。然而,统计发现,发展一个新客户比保持一个老客户的费用要高7倍,而如果“用户保持率”增加5%,将有望为运营商带来85%的利润增长。因此,对老客户的保留直接关系到运营商的利益,无论是客户流失还是话务量流失都将对运营商的经营产生深远的影响。针对这一问题,目前国外电信界应用昀为广泛的解决方案之一,是应用数据挖掘技术,研究流失客户的特征,从而对流失进行预测、并对流失的后果进行评估,采取客户保留措施,防止因客户流失而引发的经营危机,提升公司的竞争力。具体说来,客户流失是指客户终止与企业的服务合同或转向其它公司提供的服务。客户流失分析是以客户的历史通话行为数据、客户的基础信息、客户拥有的产品信息为基础,通过适当的数据挖掘手段,综合考虑流失的特点和与之相关的多种因素,从中发现与流失密切相关的特征,在此基础上建立可以在一定时间范围内预测用户流失倾向的预测模型,为相关业务部门提供有流失倾向的用户名单和这些用户的行为特征
本文标题:SPSS 数据挖掘在电信行业的应用
链接地址:https://www.777doc.com/doc-4577202 .html