您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 复杂电力系统潮流计算
0华侨大学厦门工学院电力系统综合设计课程设计报告题目:复杂电力系统潮流计算专业、班级:09级电气(4)班学生姓名:学号:指导教师:分数:2012年5月26日1目录第一章牛顿拉夫逊算法的基本资料.....................................21.1牛顿拉夫逊算法定义..........................................21.2牛顿拉夫逊算法法的发展与前景...............................第二章电力网络的数学模型..........................................32.1节点导纳矩阵的形成及修改....................................32.1.1节点导纳矩阵的形成........................................32.1.2节点导纳矩阵的修改........................................52.2节点导纳矩阵元素的物理意义..................................7第三章计算实例....................................................93.1等值电路图.................................................113.2节点导纳矩阵...............................................113.3设定所求变量的初值.........................................123.4计算修正方程...............................................133.5形成雅可比矩阵.............................................153.6求解修正方程...............................................163.7进行修正和迭代.............................................163.8迭代精度的确认.............................................173.9各节点电压计算功率分布.....................................17结论.............................................................19致谢.............................................................19参考文献...........................................................21摘要2本次的课程设计主要针对复杂电力系统——用牛顿-拉夫逊法来进行潮流计算.牛顿-拉夫逊法对初值要求严格,迭代速度快的特点,利用电力网的结构特点,提出直角坐标和极坐标牛顿-拉夫逊法潮流计算的三元素解法及相应的简化算法,并对其进行计算分析比较占用内存少,计算量小,且不影响其收敛性及准确性计算结果表明,综合算法在迭代次数和收敛速度上有优势。关键词:牛顿-拉夫逊法收敛迭代潮流计算第一章牛顿拉夫逊算法基础资料1、牛顿-拉夫逊法定义:牛顿迭代法(Newton'smethod)又称为牛顿-拉夫逊方法(Newton-Raphsonmethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)=0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。2、牛顿-拉夫逊法现状与前景:利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。这就需要较大的内存量。阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,但是,阻抗法的主要缺点就是占用计算机的内存很大,每迭代的计算量很大。当系统不断扩大时,这些缺点就更加突出。3近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。通过几十年的发展,潮流算法日趋成熟。近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法。牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法。后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法【6】。第二章电力网络的数学模型线性网络的常用解法有节点电压法和回路法,前者须列写节点电流平衡方程,后者则须列写回路方程。本章重点介绍节点方程,以及节点导纳矩阵【1】。2.1节点导纳矩阵的形成及修改2.1.1节点导纳矩阵的形成在图2-1(a)的简单电力系统中,若略去变压器的励磁功率和线路电容,负荷用阻抗表示,便可以得到一个有5个节点(包括零电位点)和7条支路的等值网络,如图2-1(b)所示。将接于节点1和4的电势源和阻抗的串联组合变换成等值的电流源和导纳的并联组合,变得到图(c)的等值网络,其中1101IyE和4404IyE分别称为节点1和4的注入电流源。41243(a)Ė1Ė41234y10y12y24y20y23y34y40(b)İ1İ41234y12y24y23y34y40y20y´10(c)图2-1电力系统及其网络以零电位点作为计算节点电压的参考点,根据基尔霍夫定律,可以写出4个独立节点的电流平衡方程如下1011212112212022323242423323434244234434044()()()()0()()0()()yUyUUIyUUyUyUUyUUyUUyUUyUUyUUyUI(2-1)上述方程组经过整理可以写成1111221211222233244322333344422433444400YUYUIYUYUYUYUYUYUYUYUYUYUI(2-2)式中,111012Yyy;2220232412Yyyyy;332334Yyy;44402434Yyyy;122112YYy;233223YYy;244224YYy;344334YYy。一般的,对于有n个独立节点的网络,可以列写n个节点方程511112211211222221122nnnnnnnnnnYUYUYUIYUYUYUIYUYUYUI(2-3)也可以用矩阵写成1111121212222212nnnnnnnnUIYYYYYYUIYYYUI(2-4)或缩写为YUI(2-5)矩阵Y称为节点导纳矩阵。它的对角线元素iiY称为节点i的自导纳,其值等于接于节点i的所有支路导纳之和。非对角线元素ijY称为节点i、j间的互导纳,它等于直接接于节点i、j间的支路导纳的负值。若节点i、j间不存在直接支路,则有0ijY。由此可知节点导纳矩阵是一个稀疏的对称矩阵。2.1.2节点导纳矩阵的修改在电力系统中,接线方式或运行状态等均会发生变化,从而使网络接线改变。比如一台变压器支路的投入或切除,均会使与之相连的节点的自导纳或互导纳发生变化,而网络中其它部分结构并没有改变,因此不必从新形成节点导纳矩阵,而只需对原有的矩阵作必要的修改就可以了。现在几种典型的接线变化说明具体的修改方法。yij(a)iijyij(b)ij-yij(c)k*yT(1-K*)yTk*(k*-1)yTijI侧II侧(e)ij-yijy´ij(d)6图2-2电力接线的改变(a)增加支路和节点;(b)增加支路;(c)切除支路;(d)改变支路参数;(e)改变变压器变比(1)从原有网络的节点i引出一条导纳为ijY的支路,j为新增加的节点,如图2-2(a)所示。由于新增加了一个节点,所以节点导纳矩阵增加一阶,矩阵作如下修改:1)原有节点i的自导纳iiY的增量iiY=ijY;2)新增节点j的自导纳jjijYy;3)新增的非对角元素ijjiijYYy;其它新增的非对角元均为零。(2)在原有网络的节点i与j之间增加一条导纳为ijy的支路,如图2-2(b)所示。则与i、j有关的元素应作如下修改:1)节点i、j的自导纳增量;iijjijYYy2)节点i、j的互导纳增量ijjiijYYy。(3)在网络的原有节点i、j之间切除一条导纳为ijy的支路,如图2-2(c)所示,其相当在i、j之间增加一条导纳为ijy的支路,因此与i、j有关的元素应作以下修改:1)节点i、j的自导纳增量iijjijYYy;2)节点i、j之间的互导纳增量ijjiijYYy;(4)原有网络节点i、j之间的导纳由ijy变成ijy,相当于在节点i、j之间切除一条导纳为ijy的支路,再增加一条导纳为ijy的支路,如图2-2(d)所示。则与i、j有关的元素应作如下修改:1)节点i、j的自导纳增量iijjijijYYyy;2)节点i、j的互导纳增量ijjiijijYYyy。7(5)原有网络节点i、j之间变压器的变比由k变为k,即相当于切除一台变比为k的变压器,再投入一台变比为k的变压器,()()BBUUUUk,如图2-2(e)变压器Ⅱ型等值电路,图中Ty为与变压器原边基准电压对应的变压器导纳标幺值,则与i、j有关的元素应作如下修改:1)节点i的自导纳增量0iiY;节点j的自导纳增量22()jjTYkky;2)节点i与j之间的互导纳增量()ijjiTYYkky。2.2节点导纳矩阵元素的物理意义节点导纳矩阵的元素已在上一节作了说明,现在进一步讨论这些元素的物理意义。如果令0kU0jU(1,2,,,)jnjk代入2-3的各式,可得ikkiYUI(1,2,,)in或0,jiikkUjkIYU(2-6)当ki时,公式2-6说明,当网络中除节点i以外所有节点都接地时,从节点i注入网络的电流同施加于节点i的电压之比,即等于节点i的自导纳iiY。换句话说,自导纳iiY是节点i以外的所有节点都接地时节点i对地的总导纳。显然,iiY应
本文标题:复杂电力系统潮流计算
链接地址:https://www.777doc.com/doc-4577566 .html