您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 西城区学习探究诊断 第十一章 全等三角形
北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!第十一章全等三角形测试1全等三角形的概念和性质学习要求1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会利用全等三角形的性质进行简单的推理和计算,解决某些实际问题.课堂学习检测一、填空题1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2cm,BE=1.5cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DBB.BCC.CDD.AD9.下列命题中,真命题的个数是()北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6B.5C.4D.无法确定图1-4图1-5图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACBB.∠CAFC.∠BAFD.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10测试2三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!图2-2图2-34.已知:如图2-1,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.分析:要证RM平分∠PRQ,即∠PRM=______,只要证______≌______证明:∵M为PQ的中点(已知),∴______=______在△______和△______中,),______(____________,),(PMRQRP已知∴______≌______().∴∠PRM=______(______).即RM.5.已知:如图2-2,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.分析:要证∠A=∠D,只要证______≌______.证明:∵BE=CF(),∴BC=______.在△ABC和△DEF中,______,______,______,ACBCAB∴______≌______().∴∠A=∠D(______).6.如图2-3,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.证明:∵CE=DE,EA=EB,∴______+______=______+______,即______=______.北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!在△ABC和△BAD中,=______(已知),),______(______),______(______),______(______已证已知∴△ABC≌△BAD().综合、运用、诊断一、解答题7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-48.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?测试3三角形全等的条件(二)学习要求1.理解和掌握全等三角形判定方法2——“边角边”.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等图3-1图3-2课堂学习检测一、填空题1.全等三角形判定方法2——“边角边”(即______)指的是_________________________________________________________________________________.2.已知:如图3-1,AB、CD相交于O点,AO=CO,OD=OB.求证:∠D=∠B.分析:要证∠D=∠B,只要证______≌______证明:在△AOD与△COB中,),______(),______(______),(ODCOAO∴△AOD≌△______().∴∠D=∠B(______).3.已知:如图3-2,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵AB∥CD(),∴∠______=∠______(),在△______和△______中,北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!),______(______),______(______),______(______∴Δ______≌Δ______().∴∠______=∠______().∴______∥______().综合、运用、诊断一、解答题4.已知:如图3-3,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-5北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!拓展、探究、思考7.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6测试4三角形全等的条件(三)学习要求1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.(1)全等三角形判定方法3——“角边角”(即______)指的是_________________________________________________________________________________;(2)全等三角形判定方法4——“角角边”(即______)指的是_________________________________________________________________________________.图4-12.已知:如图4-1,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证PA=______,只要证______≌______.证明:在△______与△______中,),______(______),______(______),______(______∴△______≌△______().∴PA=______().∵PM=PN(),北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!∴PM-______=PN-______,即AM=______.3.已知:如图4-2,ACBD.求证:OA=OB,OC=OD.分析:要证OA=OB,OC=OD,只要证______≌______.证明:∵AC∥BD,∴∠C=______.在△______与△______中,),______(______),______(),______(CAOC∴______≌______().∴OA=OB,OC=OD().图4-2二、选择题4.能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E5.如图4-3,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4-3A.甲和乙B.乙和丙C.只有乙D.只有丙6.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DFB.AE=AFC.BD=CDD.∠ADE=∠ADF三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB和CD相交于点O,且OA=OB,∠A=∠C.那么△AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,北京新东方学校个性化学习中心——初中数学组追求卓越,挑战极限,从绝望中寻找希望,人生终将辉煌!图4-4),(),(),(对顶角相等已知已知COBAODOBOACA∴△AOD≌△COB(ASA).问:这位同学的回答及证明过程正确吗?为什么?综合、应用、诊断8.已知:如图4-5,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.图4-59.已知:如图4-6,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:
本文标题:西城区学习探究诊断 第十一章 全等三角形
链接地址:https://www.777doc.com/doc-4580552 .html