您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 二次根式复习及勾股定理提高题
第1页共8页二次根式知识与题型梳理1.二次根式的概念:式子叫做二次根式.例1.下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153xaaa,其中是二次根式的是_________(填序号).2.二次根式a有意义的条件式,无意义的条件式例2.x取什么值时,下列各式在实数范围内有意义:(1)x63;(2)23xx;(3)31x(4)32xx;(5)32xx;(6)xx22;3.二次根式的性质:(1)2)(a(a);(2)2a例3.(1)2)3(;2(32)______(2)若1x2,则22)2()1(xx;(3)aa2)2(2,则a的取值范围是(4)若230ab,则2ab.(5)已知0|1|2ba,那么2012ba的值为;(6)如图,实数a、b在数轴上的位置,化简:222()abab4.最简二次根式:最简二次根式应满足的条件是被开方数中不含开得尽的、被开方数中不含、分母不含例4.1.在根式1)222;2);3);4)275xabxxyabc,最简二次根式是()A.1)2)B.3)4)C.1)3)D.1)4)2.化简下列二次根式:)0,0(1852baba=;)0(1253yyx=)51(110252xxx=;将aa1根号外的a移到根号内,得5.同类二次根式:二次根式化成后,如果则这几个根式叫叫同类二次根式.第2页共8页例5.1.下列各组二次根式中是同类二次根式的是()A.2112与B.2718与C.313与D.5445与2.若62312与nnm是同类最简二次根式,则m=,n=6.分母有理化:(1).把分母中的化去的过程称为分母有理化.(2).两个含有二次根式的非零代数式相乘,如果就称它们是互为有理化因式.例6.1.写出下列二次根式的一个有理化因式ba;ba;ba32;2.nm的倒数是;nbma的倒数是3.23211)(;23252)(;(3)2317.二次根式的运算:(1)二次根式的加减法:先把二次根式化成再.(2)二次根式的乘除法:二次根式相乘(除),将被开方数,所得的积(商)仍作积(商)的被开方数并将运算结果化为.a·b=(a≥0,b≥0);ab(b≥0,a0).例7.计算(1)80-(135+4455)(2)945÷315×32223(3)2011015152033)()((4)32nnmm·(-331nmm)÷32nm(m0,n0)(5))23(18(6))23)(23()13(2例8.先化简,再求值:(1)求22242baba的值,其中231,231ba第3页共8页(2)先化简,再求值:)12(1)1(22xxxxx其中x=211例9.(1)解不等式33xx2(2)解不等式)3(3)2(2xx例11.已知m,m为实数,满足349922nnnm,求6m-3n的值。1.①2)3.0(;②2)52(。2.二次根式31x有意义的条件是。3.若m0,则332||mmm=。4.1112xxx成立的条件是。5.比较大小:3213。6.观察下列各式:1+13=213,2+14=314,3+15=415,……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是。12.已知0)1(322yx,则4x-y=。13.下列二次根式中,最简二次根式是()A.x18B.ba25C.22baD.2a14.下列式子一定是二次根式的是()A.2xB.xC.22xD.22x15.若bb3)3(2,则()A.b3B.b3C.b≥3D.b≤317.下列说法正确的是()A.若aa2,则a0B.0,2aaa则若C.4284babaD.5的平方根是5第4页共8页勾股定理3.已知一个三角形的三边长分别是1cm,1cm和2cm则这个三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形10.如图2,以Rt△ABC的三边为直径向外作半圆,其面积分别是321,,SSS,若9,421SS,则3S。图2S3S2S1CBA图4第5页共8页13.在△ABC中,∠C=90°,AC=21cm,BC=28cm.(1)求△ABC的面积;(2)求高CD。15.如图4,△ABC中,AB=AC=13,BC=10,求△ABC的面积.【考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有222cba勾股定理:直角三角形两直角边的平方和等于斜边的平方。(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。②有一个角是45°的直角三角形是等腰直角三角形。③直角三角形斜边的中线等于斜边的一半。例题:例1:已知直角三角形的两边,利用勾股定理求第三边。(1)在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a∶b=3∶4,c=10则Rt△ABC的面积是=________。(2)如果直角三角形的两直角边长分别为1n2,2n(n1),那么它的斜边长是()A、2nB、n+1C、n2-1D、1n2(3)在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.222abcB.222acbC.222cbaD.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A、25B、14C、7D、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。(2)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242cmB、362cmC、482cmD、602cm(3)已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、15考点二:勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c有关系,222cba,那么这个三角形是直角三角形。(2)常见的勾股数:(3n,4n,5n),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)…..(n为正整数)(3)直角三角形的判定方法:①如果三角形的三边长a,b,c有关系,222cba,那么这个三角形是直角三角形。②有一个角是直角的三角形是直角三角形。③两内角互余的三角形是直角三角形。第6页共8页④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。例题:例1:勾股数的应用(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.4,5,6B.2,3,4C.11,12,13D.8,15,17(2)若线段a,b,c组成直角三角形,则它们的比为()A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶7例2:利用勾股定理逆定理判断三角形的形状(1)下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().A.1个B.2个C.3个D.4个(2)若三角形的三边之比为21::122,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形(3)已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形(4)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形(5)若△ABC的三边长a,b,c满足222abc20012a16b20c,试判断△ABC的形状。(6)△ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为,此三角形为。例3:求最大、最小角的问题(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是度。(2)已知三角形三边的比为1:3:2,则其最小角为。考点三:勾股定理的应用例1:求长度问题(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。(2)在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?CADB第7页共8页例3:最短路程问题(1)如图1,已知圆柱体底面圆的半径为2,高为2,AB,CD分别是两底面的直径,AD,BC是母线,若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短路线的长度是。(结果保留根式)(2)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短距离为。ABCDBA(图1)(图2)例4:航海问题(1)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距________海里.(2)(深圳)如图1,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上。该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。东北3060BACMDDBCA(图1)(图2)(3)如图2,某沿海开放城市A接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?例5:网格问题(1)如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0B.1C.2D.3(2)如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对(3)如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25B.12.5C.9D.8.5BCAABCDCBA(图1)(图2)(图3)第8页共8页例6:图形问题(1)如图1,求该四边形的面积(2)如图2,已知,在△ABC中,∠A=45°,AC=2,AB=3+1,则边BC的长为.431213BCDA(图1)(图2)平分线,CD=5㎝,求AB的长.
本文标题:二次根式复习及勾股定理提高题
链接地址:https://www.777doc.com/doc-4589169 .html