您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 第三章-烯烃--教案
有机化学教案第三章••1第三章烯烃一、学习目的和要求1.掌握烯烃的构造异构和命名。2.掌握烯烃的结构。3.掌握烯烃结构的Z/E标记法和次序规则。4.掌握烯烃的来源和制法。5.掌握烯烃的物理性质。6.掌握烯烃的化学性质:催化氢化、、亲电加成,马尔柯夫尼柯夫规则,硼氢化-氧化反应、臭氧化反应。7.了解烯烃的重要代表物:乙烯、丙烯和丁烯。二.本章节重点、难点烯烃的分子结构、π键的特点、σ键与π键的区别、Z/E标定法、记住次序规则、碳正离子的结构及其稳定性、亲电加成的反应历程和影响因素、乙烯的分子轨道、丙稀的游离基反应、马氏与反马氏规则。三.教学内容烯烃是指分子中含有一个碳碳双键的开链不饱和烃,烯烃双键通过SP2杂化轨道成键,因此和烷烃相比,相同碳原子的烯烃比烷烃少两个碳原子,通式为CnH2n。3.1烯烃的构造异构和命名3.1.1烯烃的同分异构烯烃的同分异构现象比烷烃的要复杂,除碳链异构外,还有由于双键的位置不同引起的位置异构和双键两侧的基团在空间的位置不同引起的顺反异构。造异构(以四个碳的烯烃为例):CH3-CH2-CH=CH21-丁烯位置异构CH3-CH=CH-CH32-丁烯构造异构CH3-C(CH3)=CH22-甲基丙烯碳链异构••23.1.2烯烃的命名(1)烯烃系统命名法烯烃系统命名法,基本和烷烃的相似。其要点是:1)选择含碳碳双键的最长碳链为主链,称为某烯。2)从最靠近双键的一端开始,将主链碳原子依次编号。3)将双键的位置标明在烯烃名称的前面(只写出双键碳原子中位次较小的一个)。4)其它同烷烃的命名原则。例如:CH3—CH—CH=CH2的名称是3-甲基-1-丁烯。CH3烯烃去掉一个氢原子后剩下的一价基团就是烯基,常见的烯基有:CH2=CH-乙烯基CH3CH=CH-丙烯基(1-丙烯基)CH2=CH-CH2-烯丙基(2-丙烯基)CH2=C–CH3异丙烯基(2)烯烃衍生物命名法(补充)烯烃衍生物命名法是以乙烯为母体,将其他烯烃看成他们的烷基衍生物。例:CH2=CH-CH3甲基乙烯(CH2)2C=CH2(不对称二甲基乙烯)使用范围:结构简单的烯烃。3.2烯烃的结构最简单的烯烃是乙烯,我们以乙烯为例来讨论烯烃双键的结构。3.2.1双键的结构乙烯与丙烯的共价键参数如下:CCHHHH0.108nm0.133nm117°121.7°有机化学教案第三章••3键能为610KJ/mol,C—C键能为346KJ/mol,由键能看出碳碳双键的键能不是碳碳单键的两倍,说明碳碳双键不是由两个碳碳单键构成的。事实证明碳碳双键是由一个σ键和一个π键构成的。现代物理方法证明:乙烯分之的所有原子在同一平面上。3.2.2sp2杂化杂化轨道理论认为,碳原子在形成双键时是以sp2杂化方式进行的,这种杂化过程如下所示:3.2.3烯烃分子中化学键的形成形成烯键的两个碳原子为sp2杂化,它们各用一个sp2杂化轨道以“头碰头”方式重叠形成碳碳σ键;每个碳原子余下的两个sp2轨道分别与其它原子或基团结合形成两个σ单键;这样而形成的五个σ键均处同一平面上,两个碳原子各剩余一个未参与杂化的p轨道,并垂直于该平面,且互相平行,从而侧面重叠形成π键,也可以描述为以“肩并肩”方式形成π键。所以碳碳双键相当于由一个碳碳σ键和一个碳碳π键组成,平均键能为610.9kJ.mol-1,其中碳碳σ键的平均键能为343.3kJ.mol-1,π键的键能为263.6kJ.mol-1,π键的键能较σ键的小。(π键键能=双键键能—碳碳单键键能=610KJ/mol–346=264KJ/mol)3.2.4乙烯分子的形成方式C=C一个sp2三个的关系sp2轨道与轨道的关系psp2sp2sp2sp22p2s2p杂化sp2杂化态激发态••4乙烯分子的形成方式如下所示:3.2.5π键的特点与σ键相比,π键与σ键有明显区别,由此决定了烯烃的化学性质,π键的特点如下:(1)π键以“肩并肩”方式重叠,碳碳之间的连线不是轴对称,因此以双键相连的两个原子之间不能再以碳碳之间连线为轴自由旋转,如果吸收一定的能量,克服p轨道的结合力,才能围绕碳碳之间连线旋转,结果使π键破坏。(2)π键由两个p轨道侧面重叠而成,重叠程度比一般σ键小,键能小,不如σ键牢固,容易发生反应。(3)π键电子云不是集中在两个原子核之间,而是分布在上下两侧,原子核对π电子的束缚力较小,因此π电子有较大的流动性,在外界试剂电场的诱导下,电子云变形,导致π键被破坏而发生化学反应。(4)π键不能独立存在,只能与σ键共存。3.2.6顺反异构由于双键不能自由旋转,而双键碳上所连接的四个原子或原子团是处在同一平面的,当双键的两个碳原子各连接两个不同的原子或原子团时,就能产生顺反异构体。例如:这种由于组成双键的两个碳原子上连接的基团在空间的位置不同而形成的构型不同的现象称为顺反异构相现象。构成双键的任何一个碳原子上所连的两个基团要不同是产生顺反异构体的必要条件,如CCHHHHHHHHHHHHπ电子云形状π键的形成乙烯中的σ键HCH3HH3CCH3HHH3C顺丁烯反丁烯(立体异构体)顺反异构体构型异构C=CC=Cbp0.88℃bp3.7℃有机化学教案第三章••5下图所示:构成双键的任何一个碳原子上所连的两个基团要不同是产生顺反异构体的必要条件,如下图所示:顺反异构体的命名可在系统名称前加一“顺”或“反”字,例如:【顺反命名法有局限性】,即在两个双键碳上所连接的两个基团彼此应有一个是相同的,彼此无相同基团时,则无法命名其顺反。例如:为解决顺反命名法的局限性,IUPAC规定,用Z、E命名法来标记顺反异构体的构型。3.3E—Z命名法3.3.1次序规则顺序规则的要点:(1)比较与双键碳原子直接连接的原子的原子序数,按大的在前、小的在后排列。例如:IBrClSPFONCDH-Br-OH-NH2-CH3H(2)如果与双键碳原子直接连接的基团的第一个原子相同时,则要依次比较第二、第三顺序原子的原子序数,来决定基团的大小顺序。例如:CH3CH2-CH3-(因第一顺序原子均为C,故必须比较与碳相连基团的大小)CH3-中与碳相连的是C(H、H、H)CCCCCCCCababbaadddabaaab无顺反异构的类型有顺反异构的类型CHCCH2CH3HCH3CH3CH2CHCHCH2CH3-2-反甲基己烯-3--3-顺戊烯CCBrClCH3HCCHCH2CH2CH3CH3CH2CH3CCCHCH3CH3CH2CH2CH2CH3CH3CH3••6CH3CH2-中与碳相连的是C(C、H、H)所以CH3CH2-优先。同理:(CH3)3C-CH3CH(CH3)CH-(CH3)2CHCH2-CH3CH2CH2CH2-(3)当取代基为不饱和基团时,则把双键、三键原子看成是它与多个某原子相连。例如:相当于相当于3.3.2E—Z命名法Z、E命名法的具体内容是:一个化合物的构型是Z型还是E型,要由“次序规则”来决定,分别比较两个双键碳原子上的取代基团按“次序规则”排出的先后顺序,如果两个双键碳上排列顺序优先的基团位于双键的同侧,则为Z构型,反之为E构型。Z是德文Zusammen的字头,是同一侧的意思。E是德文Entgegen的字头,是相反的意思。例如:(Z)-3-甲基-4-异丙基庚烷【提请注意】:用箭头帮助判断Z、E构型是相当有益的。同一方向为Z;不同方向为E。例:CH2=CHCH2-CHCCC=OCOOC=CClBrHCH3BrCH3-ClH(E)-1-氯溴丙烯-2-C=CCHCH3CH2CH2CH3CH3CH3CH2CH3CH3CH2-CH3-(CH3)2CH-CH3CH2CH2-C=CHBrClClClHBrCl(Z)-1,2-二氯-1-溴乙烯有机化学教案第三章••7【特别说明:需要说明的是,顺反命名和命名Z、E是不能一一对应的】3.4烯烃的制备3.4.1工业制法烯烃工业上可由石油裂解制得。3.4.2实验室制法(1)由醇脱水:醇在无机酸催化剂存在下加热时,失去一分子水而得到相应的烯烃。常用的酸是硫酸和磷酸。中学中就已经了解到由乙醇在浓硫酸存在下,加热脱水生成乙烯。(2)卤代烷脱卤化氢:仲、叔卤代烷形成烯烃时,其双键位置主要趋向于在含氢较少的相邻碳原子上。以取代较多的烯烃为主要产物,这就是札依采夫(Saytzeff)规律。3.5烯烃的物理性质在常温下,C2~C4的烯烃为气体,C5~C16的为液体,C17以上为固体。沸点、熔点、比重都随分子量的增加而上升,比重都小于1,都是无色物质,溶于有机溶剂,不溶于水。沸点:3.7°C0.88°C熔点:-138.9°C-105.6°C顺、反异构体之间差别最大的物理性质是偶极矩,一般反式异构体的偶极矩较顺式小,或等于零,这是因为在反式异构体中两个基团和双键碳相结合的键,它们的极性方向相反可••8以抵消,而顺式中则不能。在顺、反异构体中,顺式异构体因为极性较大,沸点通常较反式高。又因为它的对称性较低,较难填入晶格,故熔点较低。3.6烯烃的化学性质烯烃的化学性质很活泼,可以和很多试剂作用,主要发生在碳碳双键上,能起加成、氧化聚合等反应。此外,由于双键的影响,与双键直接相连的碳原子上的氢也可发生一些反应。加成反应是在一个分子中加入一个小分子的反应,在反应中π键断开,双键上两个碳原子和其它原子团结合,形成两个σ-键。3.6.1催化氢化CH2CH2RH2CH2CH3RH催化剂++催化剂为PtO2,Pd/C,Pd/BaSO4,R-Ni,Pt黑等。从氢化热的大小可比较烯烃的稳定性:乙烯丙烯丁烯顺-2-丁烯异丁烯反-2-丁烯127.2125.1126.8119.7118.8115.5kJ/mol从上述数据看出,连接在双键碳原子上的烷基数目越多的烯烃越稳定。CH2CH2RCHCH2RCHCHRR2CCHRR2CCR23.6.2亲电加成在烯烃分子中,由于π电子具流动性,易被极化,因而烯烃具有供电子性能,易受到缺电子试剂(亲电试剂)的进攻而发生反应,这种由亲电试剂的作用(进攻)而引起的加成反应称为亲电加成反应。与酸的加成是最为常见的反应。(1)与卤化氢加成(或与硫酸加成):加成方式产物是HX加到碳碳双键上,加成符合马尔科夫尼科夫(马氏)规则。1)与酸的加成机理是:第一步:有机化学教案第三章••9第二步:在第一步中氢离子与烯烃形成正碳离子;在第二步中正碳离子与碱结合。第一步是困难的,它的速率基本上或完全控制着整个加成的速率。这个反应是亲电加成反应。亲电试剂可以是质子H+也可以是其它缺电子的分子(Lewis酸)例如:与HCl的加成反应历程为要对马氏规则进行解释,用共轭效应理论是比较方便的,因此先介绍共轭效应和正碳离子的稳定性。2)共轭效应H2C=CH2中π键的两个p电子的运动范围局限在两个碳原子之间,这叫做定域运动,CH2=CH-CH=CH2中,p电子的运动范围不再局限在两个碳原子之间,而是扩充到四个碳原子之间,这叫做离域现象,也就是发生了共轭效应,这种分子叫共轭分子。共轭分子中任何一个原子受到外界试剂的作用,其它部分可以马上受到影响。如:这种电子通过共轭体系的传递方式,叫做共轭效应,其特点是沿共轭体系传递不受距离的限制。3)超共轭效应••10如上图所示,这种σ键与π键的共轭称为超共轭效应。σ键与π键之间的电子位移使体系变得稳定。超共轭效应一般是给出电子的其次序如下:-CH3CH2R-CHR2-CR3烷基上C-H键愈多,超共轭效应愈大。4)碳正离子的稳定性碳正离子带正电荷的碳是sp2杂化,与其他原子结合构成三个σ键,在同一平面上,同时还有一个空的p轨道,垂直于这个平面。按照静电学的理论:带电体系的稳定性随着电荷的分散而增大。即电荷越分散越稳定。影响正电荷稳定的因素有电子效应和空间效应。电子效应是指诱导效应和共轭效应,诱导效应前面已经介绍过了,共轭效应有σ-p,p-π,π-π,σ-π等几种方式。由于空轨道具有接受电子的能力,所以,当烷基的碳氢σ键与空轨道处于共轭状态时,碳氢键的σ电子有离域到C+的空轨道中的趋势,中心碳原子的正电荷得
本文标题:第三章-烯烃--教案
链接地址:https://www.777doc.com/doc-4594567 .html