您好,欢迎访问三七文档
武器装备信息技术概论中北大学机电工程学院机电控制工程系主讲人:焦国太教授第四章军用雷达主要内容:§1、概述§2、现代雷达关键技术§3、现代雷达体制介绍§1、概述雷达一般由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成§1、概述一、雷达的发展历程早在20世纪30年代,无线电技术出现了重大的突破,于是便发明了雷达。事实上,雷达探测原理的发现可追溯到19世纪晚期。早在1887年赫兹进行验证电磁波存在的实验时就曾发现:发射的电磁波会被一大块金属片反射回来,正如光会被镜面反射一样。§1、概述第二次世界大战中空用和海用雷达大多数工作于超高频或更低的频段。海军的雷达工作在200MHz频率上。到战争后期,工作在400MHz、600MHz和1200MHz频率上的雷达亦投入使用。第二次世界大战结束后,由于T/R(收/发)开关和磁控管的发明,雷达技术开始加速发展。收发开关使雷达的探测成功地从双(多)基变成单基雷达。也就是从收发分别用一个天线,到共用一个天线,大大简化了雷达系统。磁控管的出现使雷达的探测功率大大提高,从而大大提高了雷达的探测能力。§1、概述最新的应用有有源相控阵雷达(AESA)高频(HF)段的超视距雷达、无源雷达、双(多)基地雷达、机(或星)载预警雷达、成像雷达、组网雷达等新体制雷达。在体制上二、当前雷达技术状况§1、概述采用的技术有:发射机采用频率捷变发射信号脉冲压缩技术;功率单元采用固态器件;天线技术上平面阵列天线代替抛物面天线,无源/有源相控阵技术开始大量采用;数字波束形成;自适应波束调零;多极化及极化控制;频率分集、空间分集和能量分集;采取设置辅助发射天线与诱饵技术。在发射接收方面§1、概述采用高速并行DSP构造通用信号处理模块;大规模可编程器件的信号处理模块;高速数据传输信号交换网络;分布式的综合信息处理机成像、识别;空时二维处理(STAP);雷达反有源干扰;数字波束形成(DBF)数字副瓣对消(SLC)反欺骗式干扰、干扰源定向等;干扰回波分析与测量。MTI、MTD和脉冲多普勒(PD)雷达的复杂信号处理,高速数字数据处理,自动检测和跟踪技术。在信号处理上§1、概述采用综合显示处理技术:有故障指示,并大量采用在线可更换单元(LRU)技术;功能上可遥测雷达的工作状态和工作模式,并有故障软化能力,无人值守能力;自动录取能力。在显示器及终端方面§1、概述采用信息与数据处理一体化技术,信息融合处理;人工智能使用;组网能力的提高。在数据处理上§1、概述三、雷达技术的展望未来雷达探测与对抗一体化无源探测定位网络实用化雷达预警体系网络化低截获技术广泛应用目标探测与识别一体化、智能化预警系统实现全球空天一体化未来雷达探测与对抗一体化即综合运用红外、光电、激光、通信侦察等先进探测技术,将有源雷达、无源雷达、通信侦察、红外/激光等探测手段融为一体,构成一个多域综合探测系统。这种系统不仅具有探测手段多样、探测频域宽、探测距离远、覆盖空间大、发现目标快、截获概率高、目标识别能力强等优点,而且灵活隐蔽,抗干扰、抗硬摧毁能力强,可实现探测与对抗一体化。无源探测定位网络实用化各种军用装备工作时,会有意或无意地辐射电磁信号。因而,可以使用一定数量、覆盖一定区域的无源探测定位设备构成网络,对目标进行识别、定位。这种无源探测定位网络具有高度的隐蔽性、广泛的适用性、宽广的空域覆盖、极宽的频域覆盖、远距离的纵深覆盖、精细的目标识别等特性,可探测隐形目标,且体积小、重量轻、效率高。雷达预警体系网络化由于电子对抗技术不断发展,使用单部雷达进行防空作战将很难完成作战使命,所以未来将通过对多部不同体制、不同频段、不同极化方式的雷达巧妙布局,形成雷达预警网,使综合探测效能空前提高。低截获技术广泛应用军用雷达将广泛采用信号扩谱、伪噪声编码、功率管理和频率捷变等综合性技术措施,使敌方很难侦察到雷达本身的存在。这样,在对付敌方侦察、干扰和反辐射武器攻击时,将使雷达的性能进一步提高。目标探测与识别一体化、智能化根据未来作战的需求,雷达不仅要及时探测到对方的目标,还要能对这个目标的各种特性(如飞机架数、大小、形状、类型、作战意图等)进行识别,甚至能对目标自动成像,从而实现目标探测与识别一体化、智能化。预警系统实现全球空天一体化常规雷达受地球曲率的限制,有效距离仅几百公里。因此,对于远程低空目标,需采用超视距雷达,以克服地球曲率的影响;而对于远程中高空目标,则采用大型相控阵雷达。如需探测更大的空域,发现低空、超低空目标,则要大力发展星载雷达、气球载雷达和空中预警机等,以增加预警时间,夺取战场主动权。§2、现代雷达关键技术一、动目标检测技术二、雷达低截获概率(LPI)技术三、目标识别技术四、数字信号处理技术一、动目标检测技术现代雷达首先必须具备能在恶劣杂波干扰背景中发现目标,即具有良好的目标检测能力,只有做到这一点,才能保证防空网能防御掠地、掠海飞行的飞机和巡航导弹,尽可能早地发现威胁目标,给作战部队提供必要的战斗准备时间。地物、海浪以及雨雪等形成的杂波是不能靠增大发射功率或提高接收机灵敏度来解决的。目前,抑制这些杂波主要是用动目标显示(MTI)技术和脉冲多普勒技术。一、动目标检测技术动目标检测雷达为了抑制杂波干扰,不论是采用MTI技术或是脉冲多普勒技术,对信号有两个基本要求:①信号的相干性;②信号的脉间稳定性。因为MTI和脉冲多普勒两者都是相干处理,对MTI而言是为了避免信号的脉间不稳定而造成相减剩余。对脉冲多普勒而言,信号的脉间不稳定反映到信号频谱上是出现寄生分量,从而使多普勒滤波器产生不应有的输出。为了适应现代雷达抑制杂波的要求,现代雷达发射机的设计必须充分考虑以上对信号的两个基本要求,而雷达整机必须采用相参体制。动目标显示(MTI)技术动目标显示(MTI)技术采用的是时域上延时相减的处理,即一组处理采用两个回波脉冲,通过第一个回波脉冲信号进行延时然后与第二个回波脉冲信号进行相减,这样,固定物体回波信号由于相关性相减后输出为零,而移动物体由于时间差会输出一定的信号幅度完成移动目标信号显示。动目标显示技术的缺陷主要是无法准确探测出目标的移动速度。这一技术主要应用在民航空管中,军事应用较少。脉冲多普勒技术脉冲多普勒雷达是利用多普勒效应制成的雷达。多普勒效应是奥地利物理学家C·多普勒1842年发现的,即当波源和观测者有相对运动时会使观测到的频率发生变化,二者逐渐靠近时观察到的频率升高,逐渐远离时频率降低,这种现象被称为多普勒效应。二、雷达低截获概率(LPI)技术1、低截获雷达的概念低截获概率(LPI)雷达定义:雷达探测敌方目标的同时,雷达信号被敌方截获到的可能性概率最小。其实质就是利用各种措施使得雷达截获接收机能探测到雷达辐射信号的最大距离小于雷达对截获接收机运载平台的最大发现距离。雷达低截获概率(LPI)技术截获概率因子:RiR雷达低截获概率(LPI)技术2、实现低截获概率的技术措施低截获概率雷达与一般雷达比较一般雷达低截获概率雷达一般发射天线高性能的特殊天线脉冲(PD)体制复杂调制的连续波(Cw)体制单载波多载波窄谱超宽谱单基地多基地雷达低截获概率(LPI)技术实现低截获概率的技术措施:1)低副瓣天线技术2)连续波、准连续波雷达体制3)脉冲压缩技术4)雷达组网技术5)频率和极化捷变技术三、目标识别技术雷达目标识别技术可分为:特征识别成像识别最近几年,成像识别技术发展较快,星载合成孔径成像雷达(SAR)、机载合成孔径侦察雷达以及制导武器寻的成像雷达都已成功应用。特征识别技术也有丰富成果,如利用目标极化、相干及多普勒特征识别目标的种类、移动方向等,诸如从诱饵云中鉴定出有威胁目标和无威胁目标,真假弹头和轻重诱饵等。雷达目标特征识别技术雷达目标识别基本上包括目标特征提取、模式分析和模式分类。目标特征提取、模式分析即在获取特征信息后,对模式进行分析,再按模式特征来判断模式的类别。模式分类就是设法找出区分各类目标的函数,即所谓判决函数。分类器实质上是一个储存若干判决函数的数据库,用以判决模式的类别,以达到目标识别的目的。雷达目标特征识别技术雷达目标特征识别技术大致有下列几种:1)根据回波信号的多普勒分析进行识别2)根据目标极化特性进行识别3)根据目标频率响应进行识别4)根据对目标回波进行空间相干处理的方法进行识别5)谐波识别6)轨道识别根据回波信号的多普勒分析进行识别有一些目标各部分运动速度不同,会在回波中产生不同的多普勒频移。例如螺旋浆飞机的螺旋浆部分与机身就会产生不同的多普勒频率。利用回波信号的频谱分析就可对目标进行识别。这类雷达要有较高的频率分辨能力,故连续雷达波或高重复频率脉冲多普勒雷达较为适用。这种方法只适用于目标上有相对运动部分的情况,实践中,已用于对直升飞机机类的目标进行识别。根据目标极化特性进行识别雷达目标可视为一极化变换器,回波极化相对于发射极化的变化就反映了目标特性,包含了有关目标的信息,因而可用于目标识别。根据目标频率响应进行识别将目标看成是一个线性非时变系统,并用极点来表征目标的固有信息。雷达目标如同一个多输入、多输出的线性非时变系统,在立体角内目标的任一姿态角都可视为一对输人和一对输出,分别对应于一对正交极化,不同的姿态角则对应着不同的输入与输出。因目标的极点是独立于姿态角的,故其极点可作为目标的识别参数。通过解卷积与提取极点识别目标,通过适当设计发射信号,找到目标某一特定自然谐振频率,确定其极点的方法也属于这一类识别法。4根据对目标回波进行空间相干处理的方法进行识别这种方法是利用逆合成孔径(雷达波束不动依靠目标移动成像)成像原理来实现的。任一目标都可用一特定的二级反射函数来表征其反射特性。由于目标运动,通过逆合成孔径雷达,可求得此函数。其处理步骤为:变频至基带、补偿因目标运动产生的相位项,然后再作二维逆傅氏变换以复原反射函数。根据反射函数的知识,利用经典的图像处理技术即可识别目标。可得到的分辨力取决于目标姿态角的变化范围,亦即取决于目标的运动和观察时间,姿态角变化360°,理论上分辨力为0.2λ(λ为波长),而与目标距离无关。谐波识别人造目标的金属接缝有类似于半导体结构的非线性特征,在电波反射过程中会产生谐波分量。不同的目标,所产生各次谐波分量强弱不同。借此可对目标进行分类。此法需在雷达接收机中增加若干个谐波接收通道,且要求天线必须有足够宽的频带。轨道识别根据对多次目标回波进行处理。获得目标运行轨道,判明目标种类。例如区分卫星与导弹的识别方法即是基于这种识别方法。雷达目标成像识别技术所谓成像识别,就是利用雷达波照射目标一段时间,并对所获得的回波串进行相干成像处理,从而得到目标的高分辨力的雷达图像。这种图像与目标的真实形状有着高度的相关性,可以通过目视经验判断或计算机识别,得到目标的性质信息。雷达图像与光学图像有相似点。也有不同点,它是目标上各个组成部分的电磁波后向散射的空间分布图,而光学图像是目标上各个组成部分的光波后向散射率和散射光谱的空间分布图。雷达目标成像识别技术雷达成像处理,核心问题是提高雷达的二维或三维等效分辨力。当二维或三维分辨力都明显小于目标尺寸时,便能呈出足以识别目标性质的图像。目前,毫米波及激光雷达成像技术在制导武器寻的方面已进入实用阶段,这两种体制雷达成像主要采用光栅扫描或焦平面二维成像技术,目前研究的热点在三维成像方面。数字信号处理技术数字技术在雷达中的应用主要包括数字波形产生、数字控制、信号处理和数据处理等四个方面。数字信号处理目前在雷达应用中,就功能来说主要是实现相关积累(包括快速傅里叶变换、快速卷积、脉冲压缩、数字滤波等)、非相关积累(视频积累)、数字存储(如杂波图)、目标检测(门限)、参数估计以及目标跟踪和图像处理等。数字信号处理技术对于目标跟踪和图像处理可分为两种:①用于监视和跟踪雷达(目标尺寸比分辨单元小或差不多)的数字信号处理系统;②用于成像或地图测绘(目标尺寸远大于分辨单元)的情报雷达处理系统。数字信号处理技术电子计算机技术是雷达数字信号处理的核心。在现代雷达体
本文标题:第四章 军用雷达
链接地址:https://www.777doc.com/doc-4598213 .html