您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 圆柱与圆锥-题型归纳
圆柱圆锥常考题型归纳一、圆柱1.圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。)2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即22SR增。b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh4.圆柱的侧面展开图:a.沿着高展开,展开图形是长方形,如果2hR,展开图形为正方形。b.不沿着高展开,展开图形是平行四边形或不规则图形。c.无论如何展开都得不到梯形5、圆柱的相关计算公式:a.底面积:2=SR底b.底面周长:2Cdrc.侧面积:2SRh侧d.表面积:S=2S底+S侧=222RRhe.体积:2VRh考试常见题型:a.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,e.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的切割:a.横切:切面是圆b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh4、圆锥的相关计算公式a.底面积:2=SR底b.底面周长:2Cdrc.体积:2/3VRh考试常见题型:a.已知圆锥的底面积和高,求体积,底面周长b.已知圆锥的底面周长和高,求圆锥的体积,底面积c.已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。三、圆柱和圆锥的关系1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。4、圆柱与圆锥等底等高,体积相差23sh。5、圆柱与圆锥等高,半径之比为:ab,则体积之比为223:ab,6、圆柱与圆锥等底,高之比为:ab,则体积之比为3:ab。题型总结1、直接利用公式:分析清楚求的的是表面积,侧面积还是底面积以及体积半径变化导致底面周长,侧面积,底面积,体积的变化。两个圆柱(或两个圆锥)半径,底面积,底面周长,侧面积,表面积,体积之比。2、圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)3、横截面的问题4、浸水体积问题(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体。5、等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3.具体题型一,公式转换1.基本公式:圆柱:体积:圆锥:体积:侧面积:底面积:底面积:底面周长:表面积:底面周长:2.基本题型1、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。这样做成的铁桶的容积最大是多少?2、在一个正方体纸盒中恰好能放入一个体积为282.6立方厘米的圆柱体卷纸,求这个正方体的容积。3、求下面图形的侧面积和体积。(单位:cm)4、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米,两个圆柱各高多少厘米?5、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?二,切割问题,表面积增加或减少1.基本公式:增加的面数+每个面的面积=增加的表面积切割面(增加的面)=底面2.基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20平方分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。三.放入或拿出物体,水面上升或下降。1.基本公式:水面上升(下降)的高度×容器的底面积=物体的体积溢出的水的体积=物体的体积2.基本题型:1、一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?2、在直径为20里面的圆柱容器中,放入半径为3厘米的圆锥,水面上升0.3厘米,求圆锥的高是多少?四.高增加或减少,侧面积增加或减少问题1.关键点:A.画出展开图B.圆柱底面周长=长方形的长圆柱高=长方形的宽C.当圆柱底面周长=圆柱高时,圆柱展开是一个正方形2.基本题型:1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?五,抓住体积不变类题型1.基本考点:用沙堆铺路,粮食的转换,钢铁铸造等2.基本题型:1.一个沙堆高2米,底面半径是10分米,用这堆沙铺宽1米,厚2厘米的路,可以铺多少米?六,圆锥圆柱的转换关系1.基本关系:等底等高:圆柱体积=3圆锥体积等体积:圆锥:底面积(倍)×高(倍)=3倍1、圆柱圆锥等底等高,体积相差3厘米,求圆柱圆锥体积各是多少?
本文标题:圆柱与圆锥-题型归纳
链接地址:https://www.777doc.com/doc-4610502 .html