您好,欢迎访问三七文档
1正弦定理练习题一、选择题、1.在△ABC中,若0030,6,90BaC,则bc等于()A.1B.1C.32D.322.若A为△ABC的内角,则下列函数中一定取正值的是()A.AsinB.AcosC.AtanD.Atan13.在△ABC中,a=15,b=10,A=60°,则cosB=()A.63B.223C.-63D.-2234.在△ABC中,若Babsin2,则A等于()A006030或B.006045或C.0060120或D0015030或5.在△ABC中,::1:2:3ABC,则::abc等于()A.1:2:3B.3:2:1C.1:3:2D.2:3:16.在△ABC中,若2lgsinlgcoslgsinlgCBA,则△ABC的形状是()A直角三角形B等边三角形C不能确定D等腰三角形7.在△ABC中,若tan2ABabab,则△ABC的形状是()A直角三角形B等腰三角形C等腰直角三角形D等腰三角形或直角三角形8.A为△ABC的内角,则AAcossin的取值范围是()A)2,2(B)2,2(C]2,1(D.]2,2[9.在△ABC中,若,900C则三边的比cba等于()A.2cos2BAB.2cos2BAC.2sin2BAD.2sin2BA10、在ABC,内角,,ABC所对的边长分别为,,.abc1sincossincos,2aBCcBAb且ab,则BA.6B.3C.23D.56二、填空题、1.在△ABC中,,26AB030C,则ACBC的最大值是________。2.若在△ABC中,060,1,3,ABCAbS则CBAcbasinsinsin=_______。3.若,AB是锐角三角形的两内角,则BAtantan_____1(填或)。4.在△ABC中,若CBCBAtantan,coscos2sin则_________。5.在△ABC中,若bca2,则CACACAsinsin31coscoscoscos______。6.在△ABC中,若,tanlgtanlgtanlg2CAB则B的取值范围是_______________。7.在△ABC中,若acb2,则BBCA2coscos)cos(的值是_________。8、在锐角中,则的值等于,的取值范围为.9、在△ABC中,角A,B,C所对的边分别为a,b,c.若a=2,b=2,sinB+cosB=2,则角A的大小为________.10、在△ABC中,若b=1,c=3,∠C=2π3,则a=________.三、解答题、1、在ABC△中,已知内角A,边23BC.设内角Bx,周长为y.(1)求函数()yfx的解析式和定义域;(2)求y的最大值.ABC1,2,BCBAcosACAAC22、.△ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值。3、在中,为锐角,角所对的边分别为,且(I)求的值;(II)若,求的值。4、在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(Ⅰ)求角C的大小;(Ⅱ)求sinA-cos(B+)的最大值,并求取得最大值时角A、B的大小。5、已知向量3(sin,),(cos,1)4axbx(1)当//ab时,求2cossin2xx的值;(2)设函数()2()fxabb,已知在△ABC中,内角A、B、C的对边分别为,,abc,若63,2,sin3abB,求()4cos(2),[0,]63fxAx的取值范围.6、在△ABC中,角A,B,C所对边分别为a,b,c,且.(Ⅰ)求角A;(Ⅱ)若m,n,试求|mn|的最小值.2cos2cosCBAABCAB、ABC、、abc、、510sin,sin510ABAB21ababc、、34tan21tanAcBb(0,1)2cos,2cos2CB3一、选择题1.C00tan30,tan3023,244,23bbacbcba;2.A0,sin0AA3、解析:由正弦定理得,sinB=10×sin60°15=33.∵ab,∴B60°,∴cosB=1-332)=63,故选A.4.D012sin,sin2sinsin,sin,302baBBABAA或01505.C132,,,::sin:sin:sin::1:3:2632222ABCabcABC6.Dsinsinlglg2,2,sin2cossincossincossinAAABCBCBCsin()2cossin,sincoscossin0,BCBCBCBCsin()0,BCBC,等腰三角形7.D2cossinsinsin22tan2sinsin2sincos22ABABABabABABABabAB,tan2tan,tan022tan2ABABABAB,或tan12AB所以AB或2AB8.Csincos2sin(),4AAA而520,sin()144424AAA9.BsinsinsinsinsinabABABcC2sincos2cos222ABABAB10、【答案】A二、填空题、1.4,,sinsinsinsinsinsinACBCABACBCABBACBACACBC2(62)(sinsin)4(62)sincos22ABABABmax4cos4,()42ABACBC2.33922113sin3,4,13,13222ABCSbcAccaa;13239sinsinsinsin332abcaABCA3.,22ABAB,即sin()2tantan()2cos()2BABBcos1sintanBBB,1tan,tantan1tanAABB4、2sinsintantancoscosBCBCBCsincoscossinsin()2sin1coscossinsin2BCBCBCABCAA5.1sinsin2sin,2sincos4sincos2222ACACACACACBcos2cos,coscos3sinsin222222ACACACAC则221sinsin4sinsin322ACAC;1coscoscoscossinsin3ACACAC22(1cos)(1cos)14sinsin22ACAC22222sin2sin4sinsin112222ACAC6.)2,3[2tantantantantan,tantan()tantan1ACBACBACAC2tantantantan()tan1ACBACB3tantantantan2tantan2tanBBACACB3tan3tan,tan0tan33BBBBB7.122,sinsinsin,bacBACBBCA2coscos)cos(2coscossinsincos12sinACACBB4coscossinsincos12sinsinACACBACcoscossinsincos1ACACBcos()cos11ACB8、解:设由正弦定理得由锐角得,又,故,9、【解析】∵sinB+cosB=2,∴sinB+π4=1.又0<B<π,∴B=π4.由正弦定理,知2sinA=2sinB,∴sinA=12.又a<b,∴A<B,∴A=π6.【答案】π6;10、【解析】由正弦定理bsinB=csinC,即1sinB=3sin2π3,sinB=12.又b<c,∴B=π6.∴A=π6.∴a=1.三、解答题、1、解:(1)ABC△的内角和ABC,由00ABC,,得20B.应用正弦定理,知23sinsin4sinsinsinBCACBxxA,2sin4sinsinBCABCxA.因为yABBCAC,所以224sin4sin2303yxxx(2)因为14sincossin232yxxx543sin23xx,所以,当x,即x时,y取得最大值63.2.解:∵A、B、C为△ABC的三内角∴令∵A是△ABC的内角∴x可以取到,由抛物线的图像及性质可知∴当时,为其最大值。此时3、解(I)∵为锐角,∴,2.AB,12.sin2sin2coscosACBCACACABC029004501803903060233045cos22ABC222BCA2cos2coscos2coscos2sin12sin2sin222222BCAAAAAAA2cos2cos2sin2sin1222BCAAA2213sincos2cos22122222ABCxAxxx则01800902AA0sin1012Ax即1212x3cos2cos22BCA1sin,09030602222AAAAAB、510sin,sin510AB2225310cos1sin,cos1sin510AABB53sincos()3sincos()43sincos2sin().63110,,,,46612623ABAAAAAAAAA从而当即时∵∴(II)由(I)知,∴由得,即又∵∴∴∴4、解析:(I)由正弦定理得因为所以(II)由(I)知于是取最大值2.综上所述,的最大值为2,此时5、解:(1)33//cossin0tan=44abxxx22222cos2sincos12tan8cossin2sincos1tan5xxxxxxxxx(2)3()2()2sin(2)42fxabbx由正弦定理得sinsinabAB可得2sin2A,所以4A1()4cos(2)2sin(2)642fxAx11[0,]2[,]34412xx所以311()4cos(2)2262fxA6、解:(Ⅰ),即,∴,∴.∵,∴.(Ⅱ)mn|mn|.∵,∴,∴.从而.∴当=1,即时,|mn|取得最小值.所以|mn|.253105102cos()coscossinsin.5105102ABABAB0AB4AB34C2sin2CsinsinsinabcABC5102abc2,5abcb21ab221bb1b2,5acsinsinsincos.CAAC0,Asin0.sincos.cos0,tan1,4ACCCCC从而又所以则3.4BA2sin()6A3sincos()4AB5,.312ABtan2sincos2sin11tansincossinAcABCBbBABsincossincos2sinsincossinBAABCBABsin()2sinsincossinABCBAB1cos2A0πAπ3A2(cos,2cos1)(cos,cos)2CBBC222222π1πcoscoscoscos()1sin(2)326BCBBB
本文标题:1、正弦定理练习题
链接地址:https://www.777doc.com/doc-4628396 .html