您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 《4.3---空间直角坐标系》课件1
xOzy空间直角坐标系yOx教室里某位同学的头所在的位置z如何确定空中飞行的飞机的位置?一、空间直角坐标系一般地:在空间取定一点O从O出发引三条两两垂直的射线选定某个长度作为单位长度(原点)(坐标轴)•Oxyz111右手系XYZⅡⅦzx面ⅤⅥⅠxy面yz面ⅢⅣⅧzxy•O空间直角坐标系共有八个卦限2、空间直角坐标系的划分点的坐标:x称为点P的横坐标OxyzPxPzxzyPPyy称为点P的纵坐标z称为点P的竖坐标反之:(x,y,z)对应唯一的点P空间的点P有序数组),,(zyx11•xyzo111•P•P0xyz方法二:过P点作xy面的垂线,垂足为P0点。点P0在坐标系xOy中的坐标x、y依次是P点的x坐标、y坐标。再过P点作z轴的垂线,垂足P1在z轴上的坐标z就是P点的z坐标。P点坐标为(x,y,z)P1OxyzP(x,y,z)三、空间中点的射影点与对称点坐标1.点P(x,y,z)在下列坐标平面中的射影点为:(1)在xoy平面射影点为P1__________;(2)在xoz平面射影点为P2__________;(3)在yoz平面射影点为P3__________;;P1P2(x,y,0)(x,0,z)P3(0,y,z)关于坐标平面对称2点P(x,y,z)关于:(1)xoy平面对称的点P1为__________;(2)yoz平面对称的点P2为__________;(3)xoz平面对称的点P3为__________;关于谁对称谁不变(x,y,-z)(-x,y,z)(x,-y,z)OxyzP(x,y,z)P1对称点3.点P(x,y,z)关于:•(1)x轴对称的点P1为__________;•(2)y轴对称的点P2为__________;•(3)z轴对称的点P3为__________;(,,)xyz(,,)xyz(,,)xyz关于谁对称谁不变OxyzP(x,y,z)设点A(x1,y1,z1),点B(x2,y2,z2),则线段AB的中点M的坐标如何?121212(,,)222xxyyzzM+++空间两点中点坐标公式xo右手直角坐标系空间直角坐标系yz—Oxyz横轴纵轴竖轴111Ⅶxyozxoy面yoz面zox面空间直角坐标系共有八个卦限ⅠⅡⅢⅣⅤⅥⅧC'D'B'A'COAByzxxoy平面上的点竖坐标为0yoz平面上的点横坐标为0xoz平面上的点纵坐标为0x轴上的点纵坐标竖坐标为0z轴上的点横坐标纵坐标为0y轴上的点横坐标竖坐标为0一、坐标平面内的点二、坐标轴上的点结晶体的基本单位称为晶胞,如图是食盐晶胞示意图(可看成是八个棱长为1/2的小正方体堆积成的正方体),其中红色点代表钠原子,黑点代表氯原子,如图:建立空间直角坐标系后,试写出全部钠原子所在位置的坐标。xyzO例2:yzxP135例2xoyz对称点xyOx0y0(x0,y0)P(x0,-y0)P1横坐标不变,纵坐标相反。(-x0,y0)P2横坐标相反,纵坐标不变。P3横坐标相反,纵坐标相反。-y0-x0(-x0,-y0)空间对称点xoyz1(1,1,1)P(1,1,1)P2(1,1,1)P3(1,1,1)POxyzP(x,y,z)三、空间中点的射影点与对称点坐标1.点P(x,y,z)在下列坐标平面中的射影点为:(1)在xoy平面射影点为P1__________;(2)在xoz平面射影点为P2__________;(3)在yoz平面射影点为P3__________;;P1P2(x,y,0)(x,0,z)P3(0,y,z)关于坐标平面对称2点P(x,y,z)关于:(1)xoy平面对称的点P1为__________;(2)yoz平面对称的点P2为__________;(3)xoz平面对称的点P3为__________;关于谁对称谁不变(x,y,-z)(-x,y,z)(x,-y,z)OxyzP(x,y,z)P1对称点3.点P(x,y,z)关于:•(1)x轴对称的点P1为__________;•(2)y轴对称的点P2为__________;•(3)z轴对称的点P3为__________;(,,)xyz(,,)xyz(,,)xyz关于谁对称谁不变OxyzP(x,y,z)点M(x,y,z)是空间直角坐标系Oxyz中的一点,写出满足下列条件的点的坐标(1)与点M关于x轴对称的点(2)与点M关于y轴对称的点(3)与点M关于z轴对称的点(4)与点M关于原点对称的点(5)与点M关于xOy平面对称的点(6)与点M关于xOz平面对称的点(7)与点M关于yOz平面对称的点(x,-y,-z)(-x,y,-z)(-x,-y,z)(-x,-y,-z)(x,y,-z)(x,-y,z)(-x,y,z)关于谁对称谁不变设点A(x1,y1,z1),点B(x2,y2,z2),则线段AB的中点M的坐标如何?121212(,,)222xxyyzzM+++空间两点中点坐标公式xyzo空间点到原点的距离ABC(,,)Pxyz||||BPz22||OBxy222||OPxyz空间两点间的距离公式22121212||()()PPxxyy平面:类比猜想22212121212||()()()PPxxyyzz空间:例3求证以)1,3,4(1M、)2,1,7(2M、)3,2,5(3M三点为顶点的三角形是一个等腰三角形.解221MM,14)12()31()47(222232MM,6)23()12()75(222213MM,6)31()23()54(22232MM,13MM原结论成立.例4已知A(-3,2,1)、B(0,2,5).△AOB的周长.解由两点间距离公式可得,5)51()22()03(222BA由两点间距离公式可得,1412)3(222OA.29520222BO所以,△AOB的周长.1429145BOAOABl例5设P在x轴上,它到)3,2,0(1P的距离为到点)1,1,0(2P的距离的两倍,求点P的坐标.解设P点坐标为),0,0,(x因为P在x轴上,1PP22232x,112x2PP22211x,22x1PP,22PP112x222x,1x所求点为).0,0,1(),0,0,1(一、空间直角坐标系二、空间两点间的距离公式:(注意它与平面直角坐标系的区别)(轴、面、卦限)小结21221221221zzyyxxPP三、空间两点间的中点坐标公式:)2zz,2yy,2xx()z,y,x(M212121
本文标题:《4.3---空间直角坐标系》课件1
链接地址:https://www.777doc.com/doc-4632160 .html