您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 战地黄花——高数部分(完全整理)
考研数学讲座(1)考好数学的基点“木桶原理”已经广为人所知晓。但真要在做件事时找到自身的短处,下意识地有针对性地采取措施,以求得满意的结果。实在是一件不容易的事。非数学专业的本科学生与数学专业的学生的最基本差别,在于概念意识。数学科学从最严密的定义出发,在准确的概念与严密的逻辑基础上层层叠叠,不断在深度与广度上发展。形成一棵参天大树。在《高等数学》中,出发点处就有函数,极限,连续,可导,可微等重要概念。在《线性代数》的第一知识板块中,最核心的概念是矩阵的秩。而第二知识板块中,则是矩阵的特征值与特征向量。在《概率统计》中,第一重要的概念是分布函数。不过,《概率》不是第一层次基础课程。学习《概率》需要学生有较好的《高等数学》基础。非数学专业的本科学生大多没有概念意识,记不住概念。更不会从概念出发分析解决问题。基础层次的概念不熟,下一层次就云里雾里了。这是感到数学难学的关键。大学数学教学目的,通常只是为了满足相关本科专业的需要。教师们在授课时往往不会太重视,而且也没时间来进行概念训练。考研数学目的在于选拔,考题中基本概念与基本方法并重。这正好击中考生的软肋。在考研指导课上,往往会有学生莫名惊诧,“大一那会儿学的不一样。”原因就在于学过的概念早忘完了。做考研数学复习,首先要在基本概念与基本运算上下足功夫。按考试时间与分值来匹配,一个4分的选择题平均只有5分钟时间。而这些选择题却分别来自三门数学课程,每个题又至少有两个概念。你可以由此体验选拔考试要求你对概念的熟悉程度。从牛顿在硕士生二年级的第一篇论文算起,微积分有近四百年历史。文献浩如烟海,知识千锤百炼。非数学专业的本科生们所接触的,只是初等微积分的一少部分。方法十分经典,概念非常重要。学生们要做的是接受,理解,记忆,学会简单推理。当你面对一个题目时,你的自然反应是,“这个题目涉及的概念是---”,而非“在哪儿做过这道题”,才能算是有点入门了。你要考得满意吗?基点不在于你看了多少难题,关键在于你是否对基本概念与基本运算非常熟悉。阳春三月风光好,抓好基础正当时。考研数学讲座(2)笔下生花花自红在爱搞运动的那些年代里,数学工作者们经常受到这样的指责,“一支笔,一张纸,一杯茶,鬼画桃符,脱离实际。”发难者不懂基础研究的特点,不懂得考虑数学问题时“写”与“思”同步的重要性。也许是计算机广泛应用的影响,今天的学生们学习数学时,也不太懂得“写”的重要性。考研的学生们,往往拿着一本厚厚的考研数学指导资料,看题看解看答案或看题想解翻答案。动笔的时间很少。数学书不比小说。看数学书和照镜子差不多,镜子一拿走,印象就模糊。科学的思维是分层次的思维。求解一个数学问题时,你不能企图一眼看清全路程。你只能踏踏实实地考虑如何迈出第一步。或“依据已知条件,我首先能得到什么?”(分析法);或“要证明这个结论,就是要证明什么?”(综合法)。在很多情形下,写出第一步与不写的感觉是完全不同的。下面是一个简单的例。“连续函数与不连续函数的和会怎样?”写成“连续A+不连续B=?”后就可能想到,只有两个答案,分别填出来再说。(穷尽法)。如果,“连续A+不连续B=连续C”移项,则“连续C-连续A=不连续B”这与定理矛盾。所以有结论:连续函数与不连续函数的和一定不连续。有相当一些数学定义,比如“函数在一点可导”,其中包含有计算式。能否掌握并运用这些定义,关键就在于是否把定义算式写得滚瓜烂熟。比如,题面上有已知条件f′(1)>0,概念深,写得熟的人立刻就会先写出h趋于0时,lim(f(1+h)-f(1))/h>0。然后由此自然会联想到,下一步该运用极限的性质来推理。而写不出的人就抓瞎了。又比如《线性代数》中特征值与特征向量有定义式Aα=λα,α≠0,要是移项写成(A-λE)α=0,α≠0,这就表示α是齐次线性方程组(A-λE)X=0的非零解,进而由理论得到算法。数学思维的特点之一是“发散性”。一个数学表达式可能有几个转换方式,也许从其中一个方式会得到一个新的解释,这个解释将导引我们迈出下一步。车到山前自有路,你得把车先推到山前啊。望山跑死马。思考一步写一步,观测分析迈下步。路只能一步步走。陈景润那篇名扬世界的“1+2”论文中有28个“引理”,那就是他艰难地走向辉煌的28步。对于很多考生来说,不熟悉基本计算是他们思考问题的又一大障碍。《高等数学》感觉不好的考生,第一原因多半是不会或不熟悉求导运算。求导运算差,讨论函数的图形特征,积分,解微分方程等,反应必然都慢。《线性代数》中矩阵的乘法与矩阵乘积的多种分块表达形式,那是学好线性代数的诀窍。好些看似很难的问题,选择一个分块变形就明白了。《概率统计》中,要熟练地运用二重积分来计算二维连续型随机变量的各类问题。对于考数学三的同学来说,二重积分又是《高等数学》部分年年必考的内容。掌握了二重积分,就能在两类大题上得分。要考研吗,要去听指导课吗,一定要自己先动笔,尽可能地把基本计算练一练。我一直向考生建议,临近考试的一段时间里,不仿多自我模拟考试。在限定的考试时间内作某年研考的全巻。中途不翻书,不查阅,凭已有能力做到底。看看成绩多少。不要以为你已经看过这些试卷了。就算你知道题该怎么做,你一写出来也可能会面目全非。多动笔啊,“写”“思”同步步履轻,笔下生花花自红。考研数学讲座(3)极限概念要体验极限概念是微积分的起点。说起极限概念的历史,学数学的都多少颇为伤感。很久很久以前,西出阳关无踪影的老子就体验到,“一尺之竿,日取其半,万世不竭。”近两千年前,祖氏父子分别用园的内接正6n边形周长替带园周长以计算园周率;用分割曲边梯形为n个窄曲边梯形,进而把窄曲边梯形看成矩形来计算其面积。他们都体验到,“割而又割,即将n取得越来越大,就能得到越来越精确的园周率值或面积。”国人朴实的体验延续了一千多年,最终没有思维升华得到极限概念。而牛顿就在这一点上率先突破。极限概念起自于对“过程”的观察。极限概念显示着过程中两个变量发展趋势的关联。自变量的变化趋势分为两类,一类是x→x。;一类是x→∞“当自变量有一个特定的发展趋势时,相应的函数值是否无限接近于一个确定的数a?”如果是,则称数a为函数的极限。“无限接近”还不是严密的数学语言。但这是理解极限定义的第一步,最直观的一步。学习极限概念,首先要学会观察,了解过程中的变量有无一定的发展趋势。学习体验相应的发展趋势。其次才是计算或讨论极限值。自然数列有无限增大的变化趋势。按照游戏规则,我们还是说自然数列没有极限。自然数n趋于无穷时,数列1/n的极限是0;x趋于无穷时,函数1/x的极限是0;回顾我们最熟悉的基本初等函数,最直观的体验判断是,x趋于正无穷时,正指数的幂函数都与自然数列一样,无限增大,没有极限。x趋于正无穷时,底数大于1的指数函数都无限增大,没有极限。x→0+时,对数函数lnx趋于-∞;x趋于正无穷时,lnx无限增大,没有极限。x→∞时,正弦sinx与余弦cosx都周而复始,没有极限。在物理学中,正弦y=sinx的图形是典型的波动。我国《高等数学》教科书上普遍都选用了“震荡因子”sin(1/x)。当x趋于0时它没有极限的原因是震荡。具体想来,当x由0.01变为0.001时,只向中心点x=0靠近了一点点,而正弦sinu却完成了140多个周期。函数的图形在+1与-1之间上下波动140多次。在x=0的邻近,函数各周期的图形紧紧地“挤”在一起,就好象是“电子云”。当年我研究美国各大学的《高等数学》教材时,曾看到有的教材竟然把函数y=sin(1/x)的值整整印了一大页,他们就是要让学生更具体地体验它的数值变化。x趋于0时(1/x)*sin(1/x)不是无穷大,直观地说就是函数值震荡而没有确定的发展趋势。1/x为虎作伥,让震荡要多疯狂有多疯狂。更深入一步,你就得体验,在同一个过程中,如果有多个变量趋于0,(或无限增大。)就可能有的函数趋于0时(或无限增大时)“跑得更快”。这就是高阶,低阶概念。考研数学还要要求学生对极限有更深刻的体验。多少代人的千锤百炼,给微积分铸就了自己的倚天剑。这就是一套精密的极限语言,(即ε–δ语言)。没有这套语言,我们没有办法给出极限定义,也无法严密证明任何一个极限问题。但是,这套语言是高等微积分的内容,非数学专业的本科学生很难搞懂。数十年来,考研试卷上都没有出现过要运用ε–δ语言的题目。研究生入学考题中,考试中心往往用更深刻的体验来考查极限概念。这就是“若x趋于∞时,相应函数值f(x)有正的极限,则当∣x∣充分大时,(你不仿设定一点x。,当∣x∣>x。时,)总有f(x)>0”*“若x趋于x。时,相应函数值f(x)有正的极限,则在x。的一个适当小的去心邻域内,f(x)恒正”这是已知函数的极限而回头观察。逆向思维总是更加困难。不过,这不正和“近朱者赤,近墨者黑”一个道理吗。除了上述苻号体验外,能掌握下边简单的数值体验则更好。若x趋于无穷时,函数的极限为0,则x的绝对值充分大时,(你不仿设定一点x0,当∣x∣>x0时,)函数的绝对值恒小于1若x趋于无穷时,函数为无穷大,则x的绝对值充分大时,(你不仿设定一点x0,当∣x∣>x0时,)函数的绝对值全大于1*若x趋于0时,函数的极限为0,则在0点的某个适当小的去心邻域内,或x的绝对值充分小时,函数的绝对值全小于1(你不仿设定有充分小的数δ>0,当0<∣x∣<δ时,函数的绝对值全小于1)没有什么好解释的了,你得反复领会极限概念中“无限接近”的意义。你可以试着理解那些客观存在,可以自由设定的点x0,或充分小的数δ>0,并利用它们。考研数学讲座(4)“存在”与否全面看定义,是数学的基本游戏规则。所有的定义条件都是充分必要条件。即便有了定义,为了方便起见,数学工作者们通常会不遗余力地去寻觅既与定义等价,又更好运用的描述方式。讨论极限的存在性,就有如下三个常用的等价条件。1.海涅定理观察x趋于x0的过程时,我们并不追溯x从哪里出发;也没有考虑它究竟以怎样的方式无限靠近x.0;我们总是向未来,看发展。因而最直观的等价条件就是海涅定理:定理(1)极限存在的充分必要条件是,无论x以何种方式趋于x0,相应的函数值总有相同的极限A存在。这个定理条件的“充分性”没有实用价值。事实上我们不可能穷尽x逼近x0的所有方式。很多教科书都没有点出这一定理,只是把它的“必要性”独立成为极限的一条重要性质。即唯一性定理:“如果函数(在某一过程中)有极限存在,则极限唯一。”唯一性定理的基本应用之一,是证明某个极限不存在。2.用左右极限来描述的等价条件用ε–δ语言可以证得一个最好用也最常用的等价条件:定理(2)极限存在的充分必要条件为左、右极限存在且相等。这是在三类考研试题中出现概率都为1的考点。考研数学年年考连续定义,导数定义。本质上就是考查极限存在性。这是因为函数在一点连续,等价于函数在此点左连续,右连续。函数在一点可导,等价于函数在此点的左、右导数存在且相等。由于初等函数有较好的分析性质。考题往往会落实到分段函数的定义分界点或特殊定义点上。考生一定要对分段函数敏感,一定要学会在特殊点的两側分别考察函数的左右极限。(3)突出极限值的等价条件考数学一,二的考生,还要知道另一个等价条件:定理(3)函数f(x)在某一过程中有极限A存在的充分必要条件是,f(x)-A为无穷小。从“距离”的角度来理解,在某一过程中函数f(x)与数A无限接近,自然等价于:函数值f(x)与数A的距离∣f(x)-A∣无限接近于0如果记α=f(x)-A,在定理条件下得到一个很有用的描述形式转换:f(x)=A+α(无穷小)考研题目经常以下面三个特殊的“不存在”为素材。“存在”与否全面看。有利于我们理解前述等价条件。我用exp()表示以e为底数的指数函数,()内填指数。例1x趋于0时,函数exp(1/x)不存在极限。分析在原点x=0的左侧,x恒负,在原点右侧,x恒正。所以x从左侧趋于0时,指数1/x始终是负数,故左极限f(0-0)=0,x从右侧趋于0时,函数趋向+∞,由定理(2),函数不存在极限。也不能说,x趋于0时,exp(1/x)是无穷大。但是,在这种情形下,函数图形
本文标题:战地黄花——高数部分(完全整理)
链接地址:https://www.777doc.com/doc-4642607 .html